cho hàm số y=(m+3)x+2 (d) . tìm m để
a, đường thẳng (d) cắt Ox và Oy lần lượt tại A và Bsao cho tam giác OAB cân
b, diện tích tam giác OAB bằng 1
c, khoảng cách từ gốc tọa độ đến đường thẳng (d) đạt giá trị lớn nhất
d, khoảng cách từ gốc tọa độ đến đường thẳng (d) bằng 2
e, đường thẳng (d) cắt trục Ox tại điểm có hoành độ bằng 2
f, đường thẳng (d) cắt trục Ox tại điểm có hoành độ lớn hơn 2
Gợi ý :
a) y = 2 => x = 2 hoặc -2 ( do có thể < 0 hay > 0 )
b) S(OAB) = 1 => |x| = 1 => x = 1 hoặc -1
c) Gọi khoảng cách từ O tới (d) là OH
OH bé hơn hoặc bằng khoảng cách 2 của O tới điểm cố định trên Oy
=> max = 2 khi d song^2 Ox => x = 0 => đúng mọi m
d) Thay vào biểu thức hệ thức lượng => khoảng cách từ O tới điểm mà d cắt trên Ox là 0 => d trùng Oy
e) thay x vào có kết quả
f) cắt tại điểm > 2 => biểu thức biểu diễn x > 2 ( -2/(m+3) )