Cho a,b và a.b=6. Chứng minh \(\frac{a^2+b^2}{a-b}\ge4\sqrt{3}\)
Mn giải nhanh giùm mình nhé. MÌNH CẦN RẤT GẤP!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=3-\frac{1}{1+a}-\frac{1}{1+b}-\frac{1}{1+c}\le1\)
\(\Rightarrow T\frac{1}{1+a}\ge2\Rightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
T là pháp cộng với b,c luôn nha, lười ghi.
Tương tự ta có:\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\) và với c nữa
Nhân vế theo vế ta có đpcm
bài này chỉ cần áp dụng bất đẳng thức cô -si là được thôi
ta có \(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)
áp dụng bất đẳng thức cô -si ta được :
\(\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{\left|a-b\right|+\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)(dpcm)
\(2a+3b+\frac{6}{a}+\frac{10}{b}=\left(\frac{3}{2}a+\frac{6}{a}\right)+\left(\frac{5}{2}b+\frac{10}{b}\right)+\frac{1}{2}\left(a+b\right)\)
\(\ge2\sqrt{\frac{3}{2}a.\frac{6}{a}}+2\sqrt{\frac{5}{2}b.\frac{10}{b}}+\frac{1}{2}.4=18\)
MN = MB + NB = 2AB + 2BC = 2AC
(những bài như này nên tự làm )
Câu này dễ thôi mà. Mk ghi tóm tắt thôi bn tự trình bày nhé.
Vì A là trung điểm của BM.
=> BM = 2 AB (1)
Vì C là trung điểm của BN.
=> BN = 2 BC (2)
Từ (1) và (2) => BM + BN = 2AB + 2BC
=> MN = 2 (AB + BC)
=> MN = 2AC (đpcm)
Ta có:
\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\frac{\left|a-b\right|^2+12}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{12}=4\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}ab=6\\\left|a-b\right|=\frac{12}{\left|a-b\right|}\end{cases}}\) Em tự tìm a và b nhé!
\(\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+2ab}{a-b}=a-b+\frac{2ab}{a-b}=a-b+\frac{12}{a-b}\ge2\sqrt{12}=4\sqrt{3}\left(Cauchy\right)\)