Rút gọn phân thức(ai nhanh tick hàng ngày) năn nỉ đó khẩn cấp giúp với
a,\(\frac{18ab}{27bc}\)
b,\(\frac{-21b^2y^2}{-28by}\)
c,\(\frac{-49a^3}{14b^3}\)
d,\(\frac{12x^3y^2}{18xy^5}\)
HELP ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x-\sqrt{4x^2+4x+1}=2x-\sqrt{\left(2x+1\right)^2}=2x-\left|2x+1\right|\)
Vì \(x< -\frac{1}{2}\)nên \(\left|2x+1\right|=-\left(2x+1\right)\)
\(\Rightarrow2x+2x+1=4x+1\)
b) \(3x+2-\sqrt{9x^2-12x+4}=3x+2-\sqrt{\left(3x-2\right)^2}=3x+2-\left|3x-2\right|\)
Khi \(x\ge\frac{2}{3}\)thì \(\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-3x+2=4\)
Khi \(x< \frac{2}{3}\) thì \(\left|3x-2\right|=2-3x\)
\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-\left(2-3x\right)=6x\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)
Đặt \(\sqrt{a}=x\) ta được : \(3x-4x+7x=6x\)\(=6\sqrt{a}\)( Do \(a\ge0\))
d) \(\sqrt{160a}+2\sqrt{40a}-3\sqrt{90a}=4\sqrt{10a}+4\sqrt{10a}-9\sqrt{10a}\)\(=-\sqrt{10}\)
TK NKA !!!
1)
a) \(\dfrac{18ab}{27bc}=\dfrac{2a}{3c}\)
b) \(\dfrac{-21b^2y^2}{-28by}=\dfrac{3by}{4}\)
c) \(\dfrac{-49a^3}{14b^3}=\dfrac{-7a^3}{2b^3}\)
d) \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{2x^2}{3y^3}\)
2)
a) \(\dfrac{a^3\left(a-5\right)}{a-5}=a^3\)
b) \(\dfrac{3\left(b+7\right)^4}{8\left(b+7\right)^6}=\dfrac{3}{8\left(b+7\right)^2}\)
c) \(\dfrac{15x\left(x+5\right)^2}{20x^2\left(x+5\right)}=\dfrac{3\left(x+5\right)}{4x}\)
d) \(\dfrac{x^3-4x^2}{y\left(x-4\right)}=\dfrac{x^2\left(x-4\right)}{y\left(x-4\right)}=\dfrac{x^2}{y}\)
e) \(\dfrac{5\left(a-2c\right)^2}{2a^2-4ac}=\dfrac{5\left(a-2c\right)^2}{2a\left(a-2c\right)}=\dfrac{5\left(a-2c\right)}{2a}\)
3)
a) \(\dfrac{ax-3a}{bx-3b}=\dfrac{a\left(x-3\right)}{b\left(x-3\right)}=\dfrac{a}{b}\) (câu này mình sửa lại đề)
b) \(\dfrac{5x+20y}{15x+60y}=\dfrac{5\left(x+4y\right)}{15\left(x+4y\right)}=\dfrac{1}{3}\)
c) \(\dfrac{3b-9c}{5b^2-15bc}=\dfrac{3\left(b-3c\right)}{5b\left(b-3c\right)}=\dfrac{3}{5b}\)
d) \(\dfrac{8a^2+40ab}{ab+5b^2}=\dfrac{8a\left(a+5b\right)}{b\left(a+5b\right)}=\dfrac{8a}{b}\)
4)
a) \(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}\)
\(=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
b) \(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
5)
a) \(\dfrac{45x\left(3-x\right)}{15\left(x-3\right)^3}=\dfrac{-45x\left(x-3\right)}{15\left(x-3\right)^3}=\dfrac{-3x}{\left(x-3\right)^2}\)
b) \(\dfrac{36\left(x-2\right)^3}{32-16x}=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=\dfrac{-9\left(x-2\right)^2}{4}\)
c) \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{-x\left(y-x\right)}{5y\left(y-x\right)}=\dfrac{-x}{5y}\)
d) \(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\dfrac{-\left(y+x\right)\left(x-y\right)}{\left(x-y\right)^3}=\dfrac{-x-y}{\left(x-y\right)^2}\)
1.
a, \(\dfrac{18ab}{27bc}=\dfrac{18ab:9b}{27bc:9b}=\dfrac{2a}{3c}\)
b, \(\dfrac{-21b^2y^2}{-28by}=\dfrac{-21b^2y^2:\left(-7\right)by}{-28by:\left(-7\right)by}=\dfrac{3by}{4}\)
c, \(\dfrac{-49a^3}{14b^3}=\dfrac{-49a^3:7}{14b^3:7}=\dfrac{-7a^3}{2b^3}\)
d, \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{6xy^2\cdot2x^2}{6xy^2\cdot3y^3}=\dfrac{2x^2}{3y^3}\)
2.
a,\(\dfrac{a^3\cdot\left(a-5\right)}{a-5}=\dfrac{a^3}{1}=a^3\)
b,\(\dfrac{3\cdot\left(b+7\right)^4}{8\cdot\left(b+7\right)^6}=\dfrac{3}{8\cdot\left(b+7\right)^2}\)
c,\(\dfrac{15x\cdot\left(x+5\right)^2}{20x^2\cdot\left(x+5\right)}=\dfrac{3\cdot\left(x+5\right)}{4x}\)
d,\(\dfrac{x^3-4x^2}{y\cdot\left(x-4\right)}=\dfrac{x^2}{y}\)
e,\(\dfrac{5\cdot\left(a-2x\right)^2}{2a^2-4ac}=\dfrac{5\cdot\left(a-2x\right)}{2a}\)
3.
a,\(\dfrac{ax-3a}{bx-3b}=\dfrac{a\cdot\left(x-3\right)}{b\cdot\left(x-3\right)}=\dfrac{a}{b}\)
b, \(\dfrac{5x+20y}{15x+60y}=\dfrac{5\cdot\left(x+4y\right)}{15\cdot\left(x+4y\right)}=\dfrac{5}{15}=\dfrac{1}{3}\)
c, \(\dfrac{3b-9c}{5b^2-15bc}=\dfrac{3\cdot\left(b-3c\right)}{5b\cdot\left(b-3c\right)}=\dfrac{3}{5b}\)
d, \(\dfrac{8a^2+40ab}{ab+5b^2}=\dfrac{8a\cdot\left(a+5b\right)}{b\cdot\left(a+5b\right)}=\dfrac{8a}{b}\)
4.
a,\(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\cdot\left(x^2-4x+4\right)}{x\cdot\left(x^3-8\right)}=\dfrac{3\cdot\left(x-2\right)^2}{x\cdot\left(x-2\right)\cdot\left(x^2+2x+4\right)}=\dfrac{3\cdot\left(x-2\right)}{x\cdot\left(x^2+2x+4\right)}=\dfrac{3\cdot\left(x-2\right)}{x\cdot\left(x+2\right)^2}\)
b, \(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\cdot\left(x^2+2x+1\right)}{3x\cdot\left(x+1\right)}=\dfrac{7\cdot\left(x+1\right)^2}{3x\cdot\left(x+1\right)}=\dfrac{7\cdot\left(x+1\right)}{3x}\)
5.
a, \(\dfrac{45x\cdot\left(3-x\right)}{15x\cdot\left(x-3\right)^3}=\dfrac{3\cdot\left(3-x\right)}{\left(x-3\right)^3}=\dfrac{-3\cdot\left(x-3\right)}{\left(x-3\right)^3}=\dfrac{-3}{\left(x-3\right)^2}\)
b, \(\dfrac{36\cdot\left(x-2\right)^3}{36-16x}=\dfrac{36\cdot\left(x-2\right)^3}{16\cdot\left(2-x\right)}=\dfrac{36\cdot\left(-\left(x-2\right)\right)^3}{16\cdot\left(2-x\right)}=\dfrac{-36\cdot\left(2-x\right)^3}{16\cdot\left(2-x\right)}=\dfrac{-9\cdot\left(2-x\right)^2}{4}\)
c, \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\cdot\left(x-y\right)}{5y\cdot\left(y-x\right)}=\dfrac{-x\cdot\left(y-x\right)}{5y\cdot\left(y-x\right)}=\dfrac{-x}{5y}\)
d, \(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2+y^3}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{\left(x-y\right)^3}=\dfrac{-\left(x+y\right)\cdot\left(y-x\right)}{\left(x-y\right)^3}=\dfrac{-\left(x+y\right)}{\left(x-y\right)^2}\)
1) ĐKXĐ: x \(\ne\)1; x \(\ne\)0
Ta có: A = \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)
A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6x}{x\left(x-1\right)}\)
A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
A = \(\frac{4x^2-3x+17+2x^2-3x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
A = \(\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
A = \(\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{12}{x^2+x+1}\)
b) Ta có: B = \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)
B = \(\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}\)
B = \(\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x+3y\right)\left(x-3y\right)}\)
B = \(\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)
B = \(\frac{x^2+6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)
B = \(\frac{\left(x+3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)
B = \(\frac{x+3y}{x\left(x-3y\right)}\)
\(A=\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)
\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x\left(1-x\right)}\)
\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}-\frac{6x}{x\left(x-1\right)}\)
\(A=\frac{x\left(4x^2-3x+17\right)+x\left(x-1\right)\left(2x-1\right)-6x\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{4x^3-3x^2+17x+x\left(2x^2-x-2x+1\right)-6x^3-6x^2-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{\left(4x^3+2x^3-6x^3\right)-3x^2-3x^3-6x^2+17x+x-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{-12x^2+12x}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{-12x\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\frac{-12}{x^2+x+1}\)
Mình mới lớp 7 thui, mình ko bít lớp 8, xin lỗi, tha lỗi cho mình nha.
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
(2/2017 + 2/2018) / (5/2017 + 5/2018)
= 2 x (1/2017 + 1/2018) / 5 x (1/2017 + 1/2018)
= 2/5 (vì (1/2017 + 1/2018) khác 0)
\(\frac{\frac{2}{2017}+\frac{2}{2018}}{\frac{5}{2017}+\frac{5}{2018}}\)
\(=\frac{2\left(\frac{1}{2017}+\frac{1}{2018}\right)}{5\left(\frac{1}{2017}+\frac{1}{2018}\right)}\)
\(=\frac{2}{5}\)
Study well ! >_<
a)\(\frac{12x^5y^2}{8x^3y^5}=\frac{3x^2}{2y^3}\)
b)\(\frac{x^2+2x+1}{5x^2+5x}=\frac{\left(x+1\right)^2}{5x\left(x+1\right)}=\frac{x+1}{5x}\)
a/ \(\frac{3x^2}{2y^3}\)
b/ \(\frac{\left(x+1\right)^2}{5x\left(x+1\right)}=\frac{x+1}{5x}\)
\(\frac{12x^3y^2}{18xy^5}=\frac{12x^3y^2:6xy}{18xy^5:6xy}=\frac{2x^2y}{3y^4}\),\(\frac{-21b^2y^2}{-28by}=\frac{-21b^2y^2:-7by}{-28by:-7by}=\frac{3by}{4}\)\(\frac{-49a^3}{14b^3}=\frac{-49a^3:7}{14b^3:7}=\frac{-7a^3}{2b^3}\)\(\frac{18ab}{27bc}=\frac{18ab:9b}{27bc:9b}=\frac{2a}{3c}\)
a) \(\frac{18ab}{27bc}=\frac{2.9.ab}{3.9.bc}=\frac{2a}{3c}\)
b) \(\frac{-21b^2y^2}{-28by}=\frac{3.\left(-7\right).b.b.y.y}{4.\left(-7\right).b.y}=\frac{3by}{4}\)
c) \(\frac{-49a^3}{14b^3}=\frac{7.\left(-7\right).a^3}{7.2.b^3}=\frac{-7a^3}{2b^3}\)
d) \(\frac{12x^3y^2}{18xy^5}=\frac{2.6.x.x^2.y^2}{3.6.x.y^2.y^3}=\frac{2x^2}{3y^3}\)