K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE,  MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)

11 tháng 11 2018

1)      a.   xét trong tam giác ABC có

           I trung điểm AB và K trung điểm AC  =>IK là đường trung bình của tam giác ABC=>IK song song với BC

            vậy BCKI là hình thang (vì có hai cạng đáy song song)

          b.

            IK  // và =1/2BC   (cm ở câu a)   =>IK song  song NM

            M trung điểm HC  và N trung điểm HB  mà HB+HC=CB =>MN=IK=1/2BC

            suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK

a: Xét ΔABC có 

I là trung điểm của AB

K là trung điểm của AC

Do đó: IK là đường trung bình của ΔABC

Suy ra: IK//BC

hay BCKI là hình thang

b: Xét ΔAHC có 

M là trung điểm của HC

K là trung điểm của AC

Do đó: MK là đường trung bình của ΔAHC

Suy ra: MK//AH và \(MK=\dfrac{AH}{2}\left(1\right)\)

hay MK\(\perp\)BC

Xét ΔAHB có

I là trung điểm của AB

N là trung điểm của BH

Do đó: IN là đường trung bình của ΔAHN

Suy ra: IN//AH và \(IN=\dfrac{AH}{2}\left(2\right)\)

Từ (1) và (2) suy ra IN//MK và IN=MK

Xét tứ giác INMK có 

IN//MK

IN=MK

Do đó: INMK là hình bình hành

mà \(\widehat{KMN}=90^0\)

nên INMK là hình chữ nhật

Suy ra: IM=NK

31 tháng 7 2017

A B C I K M N

1) Vì I là trung điểm của AB ; K là trung điểm của AC => IK là đường trung bình của Tam giác ABC

=> IK // BC hay tứ giác IKCB là hình thang

2) Vì I là trung điểm của AB ; N  là trung điểm của BH => IN là đường trung bình của tam giác ABH 

=> IN = \(\frac{1}{2}\) AH (1)

Vì K là trung điểm của AC ; M là trung điểm của HC => KM là đường trung bình của tam giác ACH

=> KM = \(\frac{1}{2}\) AH

Từ (1); (2) => \(IN=KM=\frac{1}{2}AH\)

7 tháng 10 2015

a) chứng minh AH = DE

Xét tứ giác ADHE, ta có

góc HDA = góc DAE = góc AEH = 90o

nên tứ giác ADHE là hình chữ nhật

AH và DE là hai đường chéo trong hình chữ nhật ADHE nên chúng bằng nhau

b) chứng minh DIKE là hình thang vuông

* Gọi F là giao điểm của AH và DE

theo tính chất của đường chéo trong hình chữ nhật thì F là trung điểm của AH và DE, do đó tam giác FDH là tam giác cân tại F

nên góc FHD = góc FDH (1)

* DI là trung tuyến trong tam giác DBH vuông tại D nên DI = IH, do đó tam giác IDH là tam giác cân tại I

nên góc IHD = góc IDH (2)

* mặt khác góc IHD + góc FHD = góc FHI = 90o (3)

từ (1), (2), (3) suy ra góc IDH + góc FDH = góc IDF = 90o

chứng minh tương tự ta được góc FEK = 90o

tứ giác DIKE có 2 góc kề nhau là góc IDF và góc FEK đều là góc vuông nên nó là hình thang vuông.

c) tính độ dài đường trung bình của hình thang DIKE (tạm gọi là y)

y = 0.5 (ID + KE) = 0.5 (0.5 BH + 0.5 CH) = 0.25 BC

theo định lý pytago thì BC2 = AB2 + AC2 = 100 => BC = 10 => y = 2.5.

 

1 tháng 11 2016

Cho mk hỏi tại sao DI là trung tuyến của tam giác vuông DBH thì tại sao mà DI lại = IH đc ?

27 tháng 8 2021

undefined

a: Xét tứ giác AHCE có 

I là trung điểm của đường chéo AC

I là trung điểm của đường chéo HE

Do đó: AHCE là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCE là hình chữ nhật

b: Xét ΔAHB có 

K là trung điểm của AB

M là trung điểm của BH

Do đó: KM là đường trung bình của ΔAHB

Suy ra: KM//AH

hay KM\(\perp\)BH

Xét ΔAHC có

I là trung điểm của AC

N là trung điểm của HC

Do đó: IN là đường trung bình của ΔAHC

Suy ra: IN//AH

hay IN\(\perp\)BC

Xét ΔABC có

K là trung điểm của AB

I là trung điểm của AC

Do đó: KI là đường trung bình của ΔBAC

Suy ra: KI//BC

hay KI\(\perp\)AH

mà AH//KM

nên KI\(\perp\)KM

Xét tứ giác KINM có 

\(\widehat{IKM}=\widehat{KMN}=\widehat{INM}=90^0\)

Do đó: KINM là hình chữ nhật

Suy ra: KN=IM

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE