Chứng tỏ rằng khi m thay đổi các đường thẳng có phương trình:
(-5m+4)x+(3m-2)y+3m-4=0 luôn đi qua một điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử d đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)
\(\Rightarrow\) Với mọi m ta có:
\(y_0=\left(m+1\right)x_0-3m+4\)
\(\Leftrightarrow m\left(x_0-3\right)+x_0-y_0+4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-3=0\\x_0-y_0+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=3\\y_0=7\end{matrix}\right.\)
Vậy với mọi m thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;7\right)\)
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà đường thẳng đã cho đi qua
\(\Rightarrow\) Với mọi m ta luôn có:
\(\left(2m^2+m+4\right)x_0-\left(m^2-m-1\right)y_0-5m^2-4m-13=0\)
\(\Leftrightarrow\left(2x_0-y_0-5\right)m^2+\left(x_0+y_0-4\right)m+4x_0+y_0-13=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x_0-y_0-5=0\\x_0+y_0-4=0\\4x_0+y_0-13=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=3\\y_0=1\end{matrix}\right.\)
Vậy khi m thay đổi thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;1\right)\)
Giả sử điểm cố định có tọa độ \(\left(x_0;y_0\right)\)
a/ \(\left(-5m+4\right)x_0+\left(3m-2\right)y_0+3m-4=0\) \(\forall m\)
\(\Leftrightarrow-5mx_0+3my_0+3m+4x_0-2y_0-4=0\)
\(\Leftrightarrow m\left(-5x_0+3y_0+3\right)+4x_0-2y_0-4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-5x_0+3y_0+3=0\\4x_0-2y_0-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=3\\y_0=4\end{matrix}\right.\)
b/ \(\left(2m^2+m+4\right)x_0-\left(m^2-m-1\right)y_0-5m^2-4m+3=0\) \(\forall m\)
\(\Leftrightarrow m^2\left(2x_0-y_0-5\right)+m\left(x_0+y_0-4\right)+4x_0+y_0+3=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_0-y_0-5=0\\x_0+y_0-4=0\\4x_0+y_0+3=0\end{matrix}\right.\)
Không tồn tại \(x_0;y_0\) thỏa mãn, chắc bạn ghi nhầm đề
Gọi M (x\(_M,y_M\) )là điểm cố dịnh mà đường thẳng đi qua
\(\Rightarrow\left(-5m+4\right)x_M+\left(3m-2\right)y_M+3m-4=0\) \(\forall m\in R\)
\(\Leftrightarrow-5mx_M+4x_M+3my_M-2y_M+3m-4=0\) \(\forall m\in R\)
\(\Leftrightarrow\left(-5mx_M+3my_M+3m\right)+\left(4x_M-2y_M-4\right)=0\) \(\forall m\in R\)
\(\Leftrightarrow m\left(-5x_M+3y_M+3\right)+2\left(2x_M-y_M-2\right)=0\) \(\forall m\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}-5x_M+3y_M+3=0\\2x_M-y_M-2=0\end{matrix}\right.\) \(\forall m\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_M=3\\y_M=4\end{matrix}\right.\)
Vậy \(M\left(3;4\right)\)
Gọi M (xM; yM) là điểm cố dịnh mà đường thẳng đi qua
=> (-5m+4)xM + (3m-2)yM+ 3m-4=0 \(\forall m\in R\)
<=> -5mxM + 4xM+ 3myM -2yM +3m -4 =0 \(\forall m\in R\)
<=> (-5mxM +3myM+3m) + (4xM-2yM-4) =0 \(\forall m\in R\)
<=> m(-5xM+3yM+3) + 2( 2xM-yM-2) =0 \(\forall m\in R\)
<=>\(\hept{\begin{cases}-5x_M+3y_M+3=0\\2x_M-y_M-2=0\end{cases}}\) \(\forall m\in R\)
\(\Leftrightarrow\hept{\begin{cases}x_M=3\\y_M=4\end{cases}}\)
VẬY M( 3;4 )
Chúc học tốt!!
Áp dụng: Am+B=0 \(\forall m\in R\)
\(\Rightarrow\hept{\begin{cases}A=0\\B=0\end{cases}}\)