\(^{x^{ }28+x^{ }24+x^{ }20+...+x^{ }0\frac{ }{ }x^{ }30+x^{ }28+...+x^{ }0.}\)
rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{x^{30}+x^{28}+x^{26}+...+x^2+1}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{\left(x^{30}+x^{26}+x^{22}+...+x^6+x^2\right)+\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{x^2\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)+\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{\left(x^2+1\right)\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}=\frac{1}{x^2+1}\)
\(\frac{x^{30}+x^{28}+x^{26}+x^{24}+...+x^4+x^2+1}{x^{28}+x^{24}+x^{20}+...+x^8+x^4+1}=\frac{\left(x^{30}+x^{26}+x^{22}+...+x^2\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+x^{20}+...+x^4+1}\)
\(=\frac{x^2\left(x^{28}+x^{24}+...+x^4+1\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)
\(=\frac{\left(x^2+1\right)\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)
\(=x^2+1\)
a, \(A=\dfrac{4\left(3-\sqrt{7}\right)}{2}+2\sqrt{7}=\dfrac{12}{2}=6\)
b, \(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}}\right):\dfrac{2-\sqrt{x}}{x-1}\)
\(=\left(\dfrac{\sqrt{x}-2\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{2-\sqrt{x}}{x-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
nhờ bạn làm rõ vì sao \(\dfrac{\sqrt{x}-2\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{2-\sqrt{x}}{x-1}\) lại bằng \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
mình xin cảm ơn
các bn giúp mình nhanh nhé. Mình cần gấp