tính giá trị của biểu thức E=\(2x^5+x^3-3x^2+x-1\)biết \(x=\sqrt{2}\)
tìm GTNN của biểu thức P=\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-\left(\frac{x}{y}+\frac{y}{x}\right)\)với \(x,y\ne0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=\frac{x}{y}+\frac{y}{x};t\ne0\). Ta có:
\(t^2=\left(\frac{x}{y}+\frac{y}{x}\right)^2=\frac{x^2}{y^2}+2+\frac{y^2}{x^2}\)
\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)
\(\Rightarrow P=t^2-2-t=\left(t-\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
Vậy GTNN của P là:\(-\frac{9}{4}\)khi \(t=\frac{1}{2}\)
P/s Các bạn tham khảo nha
\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-2-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)+3\)
Ta có: \(\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\Rightarrow\left(\frac{x}{y}+\frac{y}{x}-3\right)\ge-1\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)\ge-2\)
\(\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)+3\ge1\)
\(\Rightarrow P\ge1\)
Vậy \(Min_P=1\)
\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)
\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)
\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x
3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2
Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)
Tương tự ta có b^2-a^2=n
Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn
Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1
Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)
Từ (1) và (2)=> n chia hết cho 40