Làm tính
a) 1999+(-2000)+2001+(-2002)
b) 49-(-54)-23
c) (-25) x 68+(-34) x(-250)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Tính :
\(a)49-\left(-54\right)-23=103-23\)
\(=80\)
\(b)\left(-25\right).68+\left(-34\right).\left(-250\right)=-1700+8500\)
\(=6800\)
\(c)1999+\left(-2000\right)+2001+\left(-2002\right)=\left(-1\right)+\left(-1\right)\)
\(=-2\)
\(d)515+\left[72+\left(-515\right)+\left(-32\right)\right]=515+\left(-475\right)\)
\(=40\)
\(e)\left(2736-75\right)-2736+175=2661-2736+175\)
\(=100\)
\(g)-2020-\left(157-2020\right)-\left(-257\right)=-2020-\left(-1863\right)-\left(-257\right)\)
\(=100\)
Câu 1:
a)\(1999+\left(-2000\right)+2001+\left(-2002\right)=1999-2000+2001-2002=-2\)
b)\(49-\left(-54\right)-23=49+54-23=80\)
c)\(\left(-25\right).68+\left(-34\right).\left(-250\right)=-1700+8500=6800\)
Câu 2:
a)x+7=3
\(\Rightarrow x=4\) Vậy x=4
b)\(\left|x\right|=7\Rightarrow x=\left\{\pm7\right\}\)mà x<0 nên x=-7 thì thỏa mãn đề bài
c) hình như thiếu điều kiện
1. Tính:
a) 1999 + ( - 2000 ) + 2001 + ( - 2002 )
= ( 1999 + 2001 ) + [ ( -2000 ) + ( -2002 ) ]
= 4000 + ( -4002 )
= -2
b) 49 - ( - 54 ) - 23
= 49 + 54 - 23
= ( 49 - 23 ) + 54
= 26 + 54
= 80
c) ( - 25 ) . 68 + ( -34 ) . ( - 250 )
= 1700 + 8500
= 6800
d) Tính tổng các giá trị x thuộc Z, biết: -3 < | x | < 4
=> | x | = 0, 1, 2; 3
=> | x | thuộc { ( - 3 ) + ( - 2 ) + ( -1) + 0 + 1 + 2 + 3 = 0
2. Tìm x thuộc Z
a) x + 7 = 3
=> x = 3 - 7
=> x = -4
b) | x | = 7 và x < 0
=> x = -7; 7
Mà x < 0
=> x = -7
c) | x | > x
=> | x | > x <=> x thuộc Z trừ
Bài 1: Tính
a) Ta có: \(\left(-25\right)\cdot68+\left(-34\right)\cdot\left(-250\right)\)
\(=-25\cdot68+\left(-340\right)\cdot\left(-25\right)\)
\(=-25\cdot\left(68-340\right)\)
\(=-25\cdot\left(-272\right)\)
\(=6800\)
b) Ta có: \(1999+\left(-2000\right)+2001+\left(-2002\right)\)
\(=1999-2000+2001-2002\)
\(=-1-1=-2\)
c) Ta có: \(515+\left[72+\left(-515\right)+\left(-32\right)\right]\)
\(=515+72-515-32\)
\(=40\)
d) Ta có: \(\left(2736-75\right)-2736+175\)
\(=2736-75-2736+175\)
\(=100\)
e) Ta có: \(-2020-\left(157-2020\right)-\left(-257\right)\)
\(=-2020-157+2020+257\)
\(=100\)
Bài 2: Tìm x
a) Ta có: \(x-\left|-2\right|=\left|-18\right|\)
\(\Leftrightarrow x-2=18\)
hay x=20
Vậy: x=20
b) Ta có: \(2x-\left|+14\right|=\left|-14\right|\)
\(\Leftrightarrow2x-14=14\)
\(\Leftrightarrow2x=28\)
hay x=14
Vậy: x=14
c) Ta có: \(\left|x+4\right|+5=20-\left(-12-7\right)\)
\(\Leftrightarrow\left|x+4\right|+5=20+12+7\)
\(\Leftrightarrow\left|x+4\right|=39-5=34\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=34\\x+4=-34\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\\x=-38\end{matrix}\right.\)
Vậy: x∈{30;-38}
d) Ta có: \(15-\left|2-x\right|=\left(-2\right)^2\)
\(\Leftrightarrow15-\left|2-x\right|=4\)
\(\Leftrightarrow\left|2-x\right|=11\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=11\\2-x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=13\end{matrix}\right.\)
Vậy: x∈{-9;13}
e) Ta có: \(\left|15-x\right|+\left|-25\right|=\left|-55\right|\)
\(\Leftrightarrow\left|15-x\right|+25=55\)
\(\Leftrightarrow\left|15-x\right|=30\)
\(\Leftrightarrow\left[{}\begin{matrix}15-x=30\\15-x=-30\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-15\\x=45\end{matrix}\right.\)
Vậy: x∈{-15;45}
g) Ta có: \(\left|17-\left(-4\right)\right|+\left|-24-\left(-5\right)\right|=\left|-x+3\right|\)
\(\Leftrightarrow\left|17+4\right|+\left|-24+5\right|=\left|3-x\right|\)
\(\Leftrightarrow\left|3-x\right|=40\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x=40\\3-x=-40\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-37\\x=43\end{matrix}\right.\)
Vậy: x∈{-37;43}
B = \(\frac{2001}{2002}+\frac{2002}{2003}\)
có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B
Bài 1:
a) \(\left|3x-5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x=-2004\)( do \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\))
Bài 2:
a) \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)
b) \(=-\left(\dfrac{1}{99.100}+\dfrac{1}{98.99}+\dfrac{1}{97.98}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)
\(=-\left(\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{98}-\dfrac{1}{99}+...+1-\dfrac{1}{2}\right)\)
\(=-\left(1-\dfrac{1}{100}\right)=-\dfrac{99}{100}\)
Bài 1:
a) \(\left|3x-5\right|=4\) (1)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\) \(\left(do\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2004=0\) \(\left(do\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)
\(\Leftrightarrow x=-2004\)