cho tỉ lệ thức
\(\frac{a-3}{a+3}\)=\(\frac{b-6}{b+6}\) với a khác -3, b khác -6 cmr \(\frac{a}{b}\)=\(\frac{1}{2}\)
Cần Gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggggggggggggggggggdhuhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
b2-c2=(a2+b2)-(a2-c2)/c
a2+b2/a2+c2-1=b/c-1
a2+b2-(a2+c2)/a2+c2=b-c/c
=b2-c2/a2+c2=b-c/c(ĐPCM)
Làm đầu tiên nhé
\(\frac{a-3}{a+3}=\frac{b-6}{b+6}\Rightarrow\left(a-3\right).\left(b+6\right)=\left(b-6\right).\left(a+3\right)\)
\(\Rightarrow ab+6a-3b-18=ab+3b-6a=18\)
\(\Rightarrow b.\left(a-3\right)+6.a-18=a.\left(b-6\right)+3.b-18\)
\(\Rightarrow b.\left(a-3\right)+6a=a.\left(b-6\right)+3b\)
\(\Rightarrow ab-3b=ab-6a+3b-6a\)
\(\Rightarrow ab-3b=ab-3.\left(4a-b\right)\)
\(b=4a-b\Rightarrow2b=4a\Rightarrow b=2a\Rightarrow\frac{a}{b}=\frac{1}{2}\)