x-1/2009 + x-2/2008 = x-3/2007 + x-4/2006
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}-1\)
\(\Leftrightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\right)=0\Leftrightarrow x=2010\)
\(\Leftrightarrow\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}-1\)
=>x-2010=0
hay x=2010
Sai đề rồi
Đề đúng \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
Xét ta thấy \(2009\ne2008\ne2007\ne2006\)
Mà để cho \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
Thì \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}=0\)hay \(\frac{x-1}{2009}=\frac{x-2}{2008}=\frac{x-3}{2007}=\frac{x-4}{2006}=1\)
Mà \(x-1\ne x-2\ne x-3\ne x-4\)Nên \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
Không thể bằng 0 được
Ta có \(\frac{x-1}{2009}=\frac{x-2}{2008}=\frac{x-3}{2007}=\frac{x-4}{2006}=1\) Nên \(x-1=2009;x-2=2008;x-3=2007;x-4=2006\)
Suy ra \(x=2010\)P/S: Sở dĩ \(\frac{x-1}{2009}=\frac{x-2}{2008}=\frac{x-3}{2007}=\frac{x-4}{2006}=1\)
được là bởi vì \(2009=2010-1\)và \(2008=2010-2\)và \(2007=2010-3\)và \(2006=2010-4\)
\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}=\dfrac{x+2007}{3}+\dfrac{x+2006}{4}\)
<=>\(\dfrac{x+1}{2009}+1+\dfrac{x+2}{2008}+1=\dfrac{x+2007}{3}+1+\dfrac{x+2006}{4}+1\)
<=>\(\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}=\dfrac{x+2010}{3}+\dfrac{x+2010}{4}\)
<=>\(\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)
vì 1/2009+1/2008-1/3-1/4=0
=>x+2010=0
=>x=-2010
Giải:
\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}=\dfrac{x+2007}{3}+\dfrac{x+2006}{4}\)
\(\Leftrightarrow\dfrac{x+1}{2009}+1+\dfrac{x+2}{2008}+1=\dfrac{x+2007}{3}+1+\dfrac{x+2006}{4}+1\)
\(\Leftrightarrow\dfrac{x+1+2009}{2009}+\dfrac{x+2+2008}{2008}=\dfrac{x+2007+3}{3}+\dfrac{x+2006+4}{4}\)
\(\Leftrightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}=\dfrac{x+2010}{3}+\dfrac{x+2010}{4}\)
\(\Leftrightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}-\dfrac{x+2010}{3}-\dfrac{x+2010}{4}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)
Vì \(\Leftrightarrow\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{3}-\dfrac{1}{4}\ne0\)
Nên \(x+2010=0\)
\(\Leftrightarrow x=-2010\)
Vậy ...
\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Leftrightarrow\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\right)=0\)
\(\Leftrightarrow x=2010\)
\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=0\)
\(\Rightarrow x-2010=0\Rightarrow x=2010\)