Phân tích đa thức thành nhân tử:
a, \(4x^2-12+9\)
b. \(11x+11y-x^2-xy\)
\(c,4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A/\(4x^2-12+9\)
\(=\left(2x\right)^2-2.2.3+3^2\)
\(=\left(2x+3\right)^2\)
B/\(11x+11y-x^2-xy\)
\(=\left(11x-x^2\right)+\left(11y-xy\right)\)
\(=x\left(11-x\right)+y\left(11-x\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
C/\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
4a2b2-(a2+b2-c2)2
= (4ab-a2-b2+c2)(4ab+a2+b2-c2)
= -[(a-b)2-c2][(a+b)2-c2]
=-(a-b+c)(a-b-c)(a+b-c)(a+b+c)
=(b-a-c)(b+c-a)(a+b-c)(a+b+c)
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
a) 11x + 11y + x2 + xy
= 11.(x+y) + x.(x+y)
= (x+y).(11+x)
b) 255 + x2 - 4xy + y2
= 255 + 2xy + x2 -2xy + y2
= 255 + 2xy + (x-y)2
...
B1: a)\(xy\left(3x-2y\right)-2xy^2=3x^2y-2y^2x-2xy^2=3x^2y-4xy^2\)
b) \(\left(x^2+4x+4\right):\left(x+2\right)=\left(x+2\right)^2:\left(x+2\right)=\left(x+2\right)\)
\(\dfrac{2\left(x-1\right)}{x^2}.\dfrac{x}{\left(x-1\right)}=\dfrac{2\left(x-1\right)x}{x^2\left(x-1\right)}=\dfrac{2}{x}\)
B2:
a)\(2x^2-4x+2=2\left(x^2-2x+1\right)=2\left(x-1\right)^2\)
b)\(x^2-y^2+3x-3y=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)
Mấy bài này là mấy bài rất rất rất cơ bản, học sinh TB cũng phải tự làm được, mấy bài kiểu này đừng nên đăng lên hỏi nha:vv
a) \(x^2-6x+8\)
\(=x^2-6x+9-1\)
\(=\left(x^2-6x+9\right)-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-3-1\right)\left(x-3+1\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
a) \(\left(2x-3\right)^2\)
b) \(11\left(x+y\right)-x\left(x+y\right)=\left(x+y\right)\left(11-x\right)\)
c) \(\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(a^2-2ab+b^2-c^2\right)\left(a^2+2ab+b^2-c^2\right)\)
\(=\left(\left(a-b\right)^2-c^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)