Giúp mình với
Tìm 3 giá trị của x thỏa mãn 5,3<x<5,4
camr ơn các bạn nhiều🙏❤️
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Giá trị của x thỏa mãn
|x+2,37|+|y−5,3|=0
Để GTBT bằng 0 thì |x+2,37| = 0 và |y−5,3| = 0
-> x = -2,37 , y = 5,3
Vậy x = -2,37
Câu 2: Giá trị của y thỏa mãn
−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0
-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)
-> |y−1,37| = 0 -> y = 1,37
Vậy y = 1,37
\(\Leftrightarrow\orbr{\begin{cases}x\cdot\left(x-3\right)=x\\x\cdot\left(x-3\right)=-x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-3=\frac{x}{x}\\x-3=-\frac{x}{x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1+3\\x=-1+3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Vậy x=2 hoặc x=4
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
ta có: ( x+2).(y-3) = 5 = 5.1 = ( -5). (-1)
TH1:
* x+2 = 5 => x = 3 ( TM)
y - 3 = 1 => y= 4 (TM)
* x+2 = 1 => x = - 1 ( TM)
y- 3 = 5 => y = 8 (TM)
TH2:
* x + 2 = -1 => x = -3 ( TM)
y - 3 = - 5 => y = - 2 ( TM)
* x + 2 = -5 => x = - 7 ( TM)
y - 3 = - 1 => y = 2 (TM)
KL: \(\left(x;y\right)\in\left\{\left(3;4\right);\left(-1;8\right);\left(-3;-2\right);\left(-7;2\right)\right\}\)
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=2021\)
\(\left(x+x+x+...+x\right)+\left(1+2+...+99\right)=2021\)
\(100x+\left(1+2+...+99\right)=2021\)
Ta tính tổng \(A=1+2+...+99\) (Số số hạng của tổng là 99)
\(A=\left(1+99\right)+\left(2+98\right)+...+\left(49+51\right)+50\)
\(A=100+100+...+100+50=100\times49+50=4950\)
Vậy \(100x+4950=2021\)
Suy ra \(100x=2021-4950=-2929\), hay \(x=-29,29\)
5,3<x<5,4
=>x=5,31 ;5,32 ; 5;33