K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018

Neu n la so chan thi n(n+3) chia het cho 2

Neu n la so le thi n+3 la so chan (vi le +le = chan)

                           => n(n+3) chia het cho 2

vay n(n+3) chia het cho 2 voi moi n la stn

14 tháng 7 2017

\(\left(x-2\right)^8=\left(x-2\right)^6\)

\(\Leftrightarrow\left(x-2\right)^8-\left(x-2\right)^6=0\)

\(\Leftrightarrow\left(x-2\right)^6\left[\left(x-2\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x-2\right)^6\left(x-3\right)\left(x-1\right)=0\)

\(\Rightarrow x=2;x=3;x=1\)

14 tháng 7 2017

=>x-2=0 hoặc x-2=1

=>x-2=0=>x=2

=>x-2=1=>x=3

26 tháng 2 2019

a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)

\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)

\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)

\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)

b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)

c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)

\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)

1 tháng 10 2018

\(x^n=0\Leftrightarrow\hept{\begin{cases}x=0\\n\in N\end{cases}}\)

1 tháng 10 2018

nếu xn=0

n thuộc N*

=>x=0

29 tháng 10 2021

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{5}>\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{3}{5}< -\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x>1\\\dfrac{1}{2}x< \dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{2}{5}\end{matrix}\right.\)

9 tháng 2 2020

\(\left(x+1\right)^2-\left(x-1\right)^2=6\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x+1+x-1\right)\left(x+1-x+1\right)=6\left(x^2+x+1\right)\)

\(\Leftrightarrow2x.2=6x^2+6x+6\)

\(\Leftrightarrow4x=6x^2+6x+6\)

\(\Leftrightarrow6x^2+2x+6=0\)

Ta có \(\Delta=2^2-4.6.6< 0\)

Vậy pt vô nghiệm

9 tháng 2 2020

\(\left(x+1\right)^2-\left(x-1\right)^2=6\left(x^2+x+1\right)\)

\(\Leftrightarrow\left[\left(x+1\right)-\left(x-1\right)\right].\left[\left(x+1\right)+\left(x-1\right)\right]=6\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=6x^2+6x+6\)

\(\Leftrightarrow2.2x=6x^2+6x+6\)\(\Leftrightarrow4x=6x^2+6x+6\)

\(\Leftrightarrow6x^2+2x+6=0\)\(\Leftrightarrow3x^2+x+3=0\)( vô nghiệm vì \(1^2< 4.3.3\)hay \(1< 36\)

Vậy tập nghiệm của phương trình là \(S=\varnothing\)

27 tháng 8 2018

Bài 1: m=11, n=12
Bài 2:a=5, b=6, c=8