Chứng minh rằng :555...3111...1 (có 2007 chữ số 5; có 2007 chữ số 1) là hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2013.5=10065
Vậy số 555...5 chia hết cho 3 khi số đó có 5 số tận cùng là 10065
Ta có :
11...1 555...5 6 (n chữ số 1; n -1 chữ số 5)
= 111…1 555…55 + 1 (n chữ số 1; n chữ số 5)
= 111…1 000…00 + 555….55 + 1 (n chữ số 1; n chữ số 0; n chữ số 5)
= 111….1 x 100…0 + 5.111…11 + 1 (n chữ số 1; n chữ số 0)
= 111…1 x (999…9 + 1) + 5.111…11 + 1
= 111…1 x 999…9 + 111…1 + 5.111…11 + 1
= (333…3)² + 6.111…1 + 1 (n chữ số 3)
= (333…3)² + 2.333…3.1 + 1
= (333…3 + 1)2
= 333…342 (n – 1 chữ số 3) là một số chính phương. (đpcm)
Ta có 555...5(2n chữ số)=55.10^(2n-2)+55.10^(2n-4)+...55.10
Mà mỗi số hạng của tổng trên dếu chia hết cho 11
=>5555...5(2n chữ số) chia hết cho 11 (đpcm)
Ta có những số chia hết cho 125 thì có 3 chữ số tận cùng là số chia hết cho 125
Mà 555 không chia hết cho 125
=>555...5(2n chữ số) không chia hết cho 125(đpcm)
Ta có: 125=25.5 => 555..5 phải phân tích ta thành tích 2 số 1 số chia 5 cho 5, số còn là chia hết cho 25. Ta có 5555...5= 111...1. Mà 111...1 có tận cùng là 11 k chia hết cho 25 => 555...5 k chia hết cho 25. Ta có tổng các chữ số hàng lẻ trừ tổng các chữ số hằng chẵn chia hết cho 11 thì số đó chia hết cho 11 mà 555...555 có 2n chữ số => số chữ số hàng lẻ = số chữ số hàng chẵn => hiệu =0 chia hết cho 11( đpcm)
Ta có:
\(a=11...1=\frac{10^{2008}-1}{9}\)
\(b=100...05=10...0+5=10^{2008}+5\)
\(\Rightarrow ab+1=\frac{\left(10^{2008}-1\right)\left(10^{2008}+5\right)}{9}+1\)
\(=\frac{\left(10^{2008}\right)^2+4.10^{2008}-5+9}{9}\)
\(=\left(\frac{10^{2008}+2}{3}\right)^2\)
\(\Rightarrow\sqrt{ab+1}=\sqrt{\left(\frac{10^{2008}+2}{3}\right)^2}=\frac{10^{2008}+2}{3}\)
Ta thấy:
\(10^{2008}+2=10...02⋮3\Rightarrow\frac{10^{2008}+2}{3}\in N\)
Hay \(\sqrt{ab+1}\) là số tự nhiên (Đpcm)
a) Giả sử 555…5 chia hết cho 125
=>5.111…1 chia hết cho 5.25
=>111…1 chia hết cho 25=5.5
=>111…1 chia hết cho 5
mà 111…1 có chữ số tận cùng là 1 nên 111…1 không chia hết cho 5.
=>Vô lí.
=>555…5 không chia hết cho 125.
b) 10n+23=10n+8=10…08
Số trên có tổng các chữ số là: 1+0+0+…+0+8=9 chia hết cho 9.
=>10…08 chi hết cho 9.
=>10n+23 chia hết cho 9.
555...3111...1 = 5 . 2007 + 3 + 1 . 2007
= 10035 + 3 + 2007
= 3 . 3345 + 3 + 3 . 669
= 3 . ( 3345 + 1 + 669 ) \(⋮\)3
=> 555...3111...1 là hợp số
Thằng chó!!!Bố mày bít cách làm rùi m