K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

\(\frac{4x-1}{x^2}< 4\)

\(\Leftrightarrow\)\(4x^2>4x-1\)

\(\Leftrightarrow\)\(4x^2-4x+1>0\)

\(\Leftrightarrow\)\(\left(2x-1\right)^2>0\)

Mà \(\left(2x-1\right)^2\ge0\) nên để \(\left(2x-1\right)^2>0\) thì \(2x-1\ne0\)\(\Leftrightarrow\)\(x\ne\frac{1}{2}\)

Vậy để \(M< 4\) thì \(x\ne\frac{1}{2}\)

Chúc bạn học tốt ~ 

a: Để M có nghĩa thì x+2<>0

hay x<>-2

b: Để M=4 thì 4x+8=3x+9

hay x=1(nhận)

c: Để M là số nguyên thì \(3x+9⋮x+2\)

\(\Leftrightarrow3x+6+3⋮x+2\)

\(\Leftrightarrow x+2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{-1;-3;1;-5\right\}\)

8 tháng 3 2022

`a)`

Để `M` có nghĩa thì:

`x+2\ne0`

`<=>x\ne-2`

Vậy `x\ne-2` thì `M` có nghĩa

`b)`

`M=4`

`<=>(3x+9)/(x+2)=4`

`=>4x+8=3x+9`

`<=>4x-3x=9-8`

`<=>x=1`

Vậy `x=1` thì `M=4`

`c)`

`M\inZZ<=>(3x+9)/(x+2)\inZZ`

`=>3x+9\vdotsx+2`

`=>3x+6+3\vdotsx+2`

`=>3.(x+2)+3\vdotsx+2`

`=>x+2\in Ư(3)={+-1;+-3}`

Ta có bảng:

$\begin{array}{|c|c|}\hline x+2&1&-1&3&-3\\\hline x&-1&-3&1&-5\\\hline\end{array}$

Vậy `x\in{-1;-3;1;-5}` thì `M\inZZ`

NV
15 tháng 12 2020

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)

a: =>m^2x-m^3-x+3m-2=0

=>x(m^2-1)=m^3-3m+2

=>x(m-1)(m+1)=m^3-m-2m+2=m(m-1)(m+1)-2(m-1)=(m-1)^2*(m+2)

Để đây là pt bậc nhất 1 ẩn thì (m-1)(m+1)<>0

=>m<>1 và m<>-1

b: Khi m=0 thì pt sẽ là x+2=0

=>x=-2

c: Khi x=3 thì pt sẽ là:

3(m^2-1)=m^3-3m+2

=>(m-1)^2(m+1)-3(m-1)(m+1)=0

=>(m-1)(m+1)(m-1-3)=0

=>(m-1)(m+1)(m-4)=0

=>\(m\in\left\{1;-1;4\right\}\)

 

NV
26 tháng 3 2023

\(\Delta'=\left(m-2\right)^2-3\left(m-2\right)=\left(m-2\right)\left(m-5\right)\)

a.

Phương trình có nghiệm kép khi:

\(\left\{{}\begin{matrix}a=m-2\ne0\\\Delta'=\left(m-2\right)\left(m-5\right)=0\end{matrix}\right.\) \(\Rightarrow m=5\)

b.

Phương trình có 2 nghiệm pb khi: 

\(\left\{{}\begin{matrix}m-2\ne0\\\left(m-2\right)\left(m-5\right)>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>5\\m< 2\end{matrix}\right.\)

c.

- Với \(m=2\) pt vô nghiệm

- Với \(m\ne2\) pt có nghiệm khi: \(\left(m-2\right)\left(m-5\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge5\\m< 2\end{matrix}\right.\)

d.

Pt vô nghiệm khi: \(\left[{}\begin{matrix}m=2\\\left(m-2\right)\left(m-5\right)< 0\end{matrix}\right.\)

\(\Rightarrow2\le m< 5\)

9 tháng 10 2021

Giúp mình những câu mik in đậm nhé

Thanks mọi người

9 tháng 10 2021

a) ĐKXĐ: \(x\ge0,x\ne9\)

\(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3}{\sqrt{x}+3}\)

b) \(A=\dfrac{3}{\sqrt{x}+3}=\dfrac{3}{\sqrt{64}+3}=\dfrac{3}{8+3}=\dfrac{3}{11}\)

c) \(2A=\dfrac{6}{\sqrt{x}+3}=1\Rightarrow\sqrt{x}+3=6\Rightarrow x=9\left(tm\right)\)

g) \(A=\dfrac{3}{\sqrt{x}+3}\in Z\)

\(\Rightarrow\sqrt{x}+3\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Kết hợp đk:

\(\Rightarrow x\in\left\{0\right\}\)

h) \(A=\dfrac{3}{\sqrt{x}+3}\in Z\)

\(\Rightarrow\sqrt{x}+3\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Kết hợp đk:

\(\Rightarrow x\in\left\{0\right\}\)

k) \(2A=\dfrac{6}{\sqrt{x}+3}=m\)

21 tháng 3 2021

a, Với m=1 thay vào pt 

Ta có

\(x^2+x-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

b, 

Thay x=2 vào pt

ta có

\(4-2-3m+2=0\)

\(\Leftrightarrow4-3m=0\)

\(\Rightarrow m=\dfrac{4}{3}\)

c, Ta có

\(\Delta=1-4\left(-3m+2\right)\)

\(=12m-7\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

\(\Rightarrow12m-7>0\)

\(\Rightarrow m>\dfrac{7}{12}\)

d, 

Để ptcos nghiệm kép thì \(\Delta=0\)

\(\Rightarrow12m-7=0\)

\(\Rightarrow m=\dfrac{7}{12}\)

e, 

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Rightarrow m< \dfrac{7}{12}\)

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

20 tháng 12 2022

a: Thay x=1 và y=3 vào (d), ta đc:

m-1+2=3

=>m+1=3

=>m=2

b: Thay y=0 vào (d), ta đc:

x-1=0

=>x=1

Thay x=1 và y=0 vào (d1), ta được:

2*1+m-1=0

=>m=-1