Chứng minh rằng ab=2.cd thì abcd chia hết cho 67
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số abcd = 100ab+cd=200cd+cd (vì ab = 2cd)
hay = 201cd
Mà 201 \(⋮\) 67
Do đó : nếu ab = 2cd thì abcd \(⋮\) 67
Ta có: abcd = ab x 100 + cd.
Vì ab = 2 x cd nên 2 x cd x 100 + cd = abcd
=> abcd = cd x ( 200+1) = cd x 201
Vì 201 chia hết cho 67 nên cd x 201 chia hết cho 67.
Do đó abcd chia hết cho 67
Ta có: abcd = ab x 100 + cd.
Vì ab = 2 x cd nên 2 x cd x 100 + cd = abcd
=> abcd = cd x ( 200+1) = cd x 201
Vì 201 chia hết cho 67 nên cd x 201 chia hết cho 67.
Do đó abcd chia hết cho 67
abcd = 1000a + 100b + 10c + d = 100ab + cd = 200 cd + cd = 201 cd
Mà 201 chia hết cho 67
=> ab = 2cd chia hết cho 67
abcd=100ab+cd=200cd+cd(vì ab=2cd)
hay 201cd
mà 201 chia hết cho 67
=> đpcm
Ta có :
abcd = 100ab + cd = 100.2cd + cd = 201cd
Mà 201 chia hết cho 67 nên abcd chia hết cho 67 ( đpcm )
\(a.\)Ta có:
\(\overline{abcd}=100\overline{ab}+\overline{cd}=200\overline{cd}+\overline{dc}\)( Vì \(\overline{ab}=2\overline{cd}\))
\(=201\overline{cd}\)
Mà \(201⋮67\) nên \(201\overline{cd}⋮67\)\(\left(đpcm\right)\)
\(b.\)Ta có:
\(\overline{abab}=\overline{ab00}+\overline{ab}=100\overline{ab}+\overline{ab}=101\overline{ab}⋮101\)
Vậy: \(\overline{abab}⋮101\) \(\left(đpcm\right)\)
Ta có:ab=2cd
abcd=ab.100.cd=2.cd.100.cd=201cd=3.67.cd chia hết cho 67(đpcm)