Cho hình bình hành ABCD có AD cát AC . Gọi M , N lần lượt là trung điểm của AB , CD . Cm tứ giác AMCN là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Suy ra: MN//AD
hay MN\(\perp\)AC
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
mà MN\(\perp\)AC
nên AMCN là hình thoi
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Suy ra: MN//AD
hay MN\(\perp\)AC
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
mà MN\(\perp\)AC
nên AMCN là hình thoi
ABCD là hình bình hành nên AB//CD và AB = CD
Mà AM = 1/2 AB, DN = NC = 1/2 DC \(\Rightarrow AM=DN=NC\)
Do đó: AMCN và AMND là hình bình hành
MN // AD (cmt)
Kết hợp với \(AD\perp AC\left(gt\right)\Rightarrow MN\perp AC\)(1)
Mặt khác, AMCN là hình bình hành (2)
Từ (1) và (2), ta được AMCN là hình thoi.
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Suy ra: MN//AD
hay MN\(\perp\)AC
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
mà MN\(\perp\)AC
nên AMCN là hình thoi
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: ABCDlà hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AMCN là hình bình hành
nên AC cắt MN tại trung điểm của mỗi đường
=>M đối xứng N qua O
hduriiiigfy78gthgct66ee5rddddddrsrwt4465 6 6b787568ct7