cho tam giác vuông ABC vuông tại A đường cao AH . Lấy D đối xứng với H qua AB , E đối xứng với H qua AC , DH cắt AB tại M , HE cắt AC tại N
tứ giác AMHN là hình gì chứng minh
chứng minh rằng 3 điểm D,A,E thẳng hành
chứng minh BDEC là hình thang
chứng minh rằng DE=MN+AH
a: H và D đối xứng nhau qua AB
nen AB vuông góc với HD tại M và M là trung điểm của HD
=>ΔAHD cân tại A
=>AB là phân giác của góc HAD(1)
H và E đối xứng nhau qua AC
nên AC vuông góc với HE tại N và N là trung điểm của HE
=>ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
b: Từ (1) và (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
c: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
=>góc ADB=90 độ
=>BD vuông góc với DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
Do đó: ΔAHC=ΔAEC
=>góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BDEC là hình thang