K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

f=1-(2.3/4+3.4/6+...+101.102/202)

A=2.3/4+3.4/6+...+101.102/202)

2a=2.3/2+3.4/3+...+101.102/101

2a=3+4+...+102

2a=100.105/2

a=100.105/4

a=2625

f=1-2625

f=-(2624)

17 tháng 2 2017

Ta có: \(\left|x+\frac{1}{101}\right|\ge0\); \(\left|x+\frac{2}{101}\right|\) \(\ge0\); ...; \(\left|x+\frac{100}{101}\right|\ge0\)

\(\Rightarrow101x\ge0\)

\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\)

\(\Rightarrow\left|x+\frac{1}{101}\right|=x+\frac{1}{101}\); \(\left|x+\frac{2}{101}\right|=x+\frac{2}{101}\); ...; \(\left|x+\frac{100}{101}\right|=x+\frac{100}{101}\)

Thay vào đề bài ta đc:

\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)

\(\Rightarrow\) \(100x\) + \(\left(\frac{1+2+...+101}{101}\right)=101x\)

\(\Rightarrow100x+101=101x\)

\(\Rightarrow x=101\)

Vậy \(x=101.\)

17 tháng 2 2017

\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+....+\left|x+\frac{100}{101}\right|\)=101x (1)

điều kiện:101x\(\ge\) 0 \(\Rightarrow\) x\(\ge\) 0

từ (1) \(\Rightarrow\) \(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}\)=101x

\(\Rightarrow\) 100x+(\(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\))=101x

\(\Rightarrow\) 100x+\(\frac{5050}{101}\)=101x

\(\Rightarrow\) \(\frac{5050}{101}\)=101x-100x

\(\Rightarrow\) x=50

k bt mk lm sai hay lm đúng nữa

nếu mk lm sai thì thôi nha!

31 tháng 3 2019

a) \(\frac{53}{101}.\frac{-13}{97}+\frac{53}{101}.\frac{-84}{97}\)

\(=\frac{53}{101}\left(\frac{-13}{97}+\frac{-84}{97}\right)\)

\(=\frac{53}{101}.\frac{-97}{97}\)

\(=\frac{53}{101}.\left(-1\right)\)

\(=\frac{-53}{101}\)

b) \(\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)

\(=\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)

\(=\left(\frac{1}{57}-\frac{1}{5757}\right).0\)

\(=0\)

31 tháng 3 2019

c) \(\frac{3^2}{25}.\frac{75}{-21}.\frac{50}{35}\)

\(=\frac{3^2.75.50}{25.\left(-21\right).35}\)

\(=\frac{3.3.25.3.5.5.2}{25.3.\left(-7\right).5.7}\)

\(=\frac{3.3.5.2}{\left(-7\right).7}\)

\(=\frac{90}{-49}\)

d) \(\frac{25.48-25.18}{20.5^3}\)

\(=\frac{25\left(48-18\right)}{10.2.125}\)

\(=\frac{25.10.3}{10.2.25.5}\)

\(=\frac{3}{10}\)

30 tháng 7 2018

\(\left(100+\frac{99}{2}+\frac{98}{3}+...+\frac{1}{100}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)-2\)

\(=\frac{\left[\left(\frac{99}{2}+1\right)+\left(\frac{98}{3}+1\right)+...+\left(\frac{1}{100}+1\right)+\frac{101}{101}\right]}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)

\(=\frac{\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}+\frac{101}{101}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)

\(=\frac{101.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)

\(=101-2\)( vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\ne0\))

\(=99\)

Tham khảo nhé~