K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

ap dung bdt co si ta co:

\(xy+yz+xz>=3\sqrt[3]{\left(xyz\right)^2}\)

=>\(100>3\sqrt[3]{x^2y^2z^2}\)

=>\(\frac{100}{3}>=\sqrt[3]{\left(xyz\right)^2}\)

=>\(\sqrt{\frac{100^3}{3^3}}>=xyz\)

=>\(\frac{1000}{3\sqrt{3}}>=xyz\)

=>\(Amax=\frac{1000}{3\sqrt{3}}\)

xay ra dau bang khi va chi khi x=y=z\(\frac{10}{\sqrt{3}}\)

NV
5 tháng 8 2021

\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)

\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)

\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)

23 tháng 11 2016

với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1

Khi đó P=1.1+1.1+1.1=3

29 tháng 7 2020

Bài làm:

Ta có: \(x+y+z=8\Leftrightarrow\left(x+y+z\right)^2=64\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=64\)

Mà \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

Thay vào ta có: \(64\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow xy+yz+zx\le\frac{64}{3}\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{8}{3}\)

Vậy Max(B) = 64/3 khi x = y = z = 8/3

9 tháng 1 2018

cô si cho gt

17 tháng 12 2016

Có: \(x+y+z=3\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

Vì: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0,\forall x,y,z\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow3\left(xy+yz+zx\right)\le x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

\(\Leftrightarrow xy+yz+zx\le3\)

Vậu GTLN của P là 3 khi \(x=y=z=1\)

 

14 tháng 3 2019

Tại sao

3(xy+yz+zx) \(\le x^2+y^2+z^2+2\left(xy+yz+zx\right)\)=9