Cho A(2;1) B(-4;3) C(1;-2)
a. tìm G sao cho B là trung điểm AG
b. tìm H sao cho C là tọng tâm ΔHAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=2(1+2+2^2+...+2^19)
=>A chia hết cho 2
b)A=(2+2^2)+(2^3+2^4)+...+(2^19+2^20)
A=2(1+2)+2^3(1+2)+...+2^19(1+2)
A=2.3+2^3.3+...+2^19.3
A=3(2+2^3+...+2^19)
=>A chia hết cho 3
c)A=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)
A=2(1+2^2)+2^2(1+2^2)+...+2^18(1+2^2)
A=2.5+2^2.5+...+2^18.5
A=5(2+2^2+...+2^18)
=>A chia hết cho 5
\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)
\(A=2\cdot3+...+2^{99}\cdot3\)
\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)
2 ý kia tương tự
Giải:
Đặt S=(2+2^2+2^3+...+2^100)
=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296
=2.31+26.31+...+296.31
=31.(2+26+...+296)\(⋮\)31
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5
Lời giải:
a) Để B là trung điểm AG thì:
\(\left\{\begin{matrix} x_B=\frac{x_A+x_G}{2}\\ y_B=\frac{y_A+y_G}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -4=\frac{2+x_G}{2}\\ 3=\frac{1+y_G}{2}\end{matrix}\right.\Rightarrow (x_G,y_G)=(-10; 5)\)
Vậy \(G(-10; 5)\)
b)
Để C là trọng tâm tam giác HAB thì:
\(\left\{\begin{matrix} x_C=\frac{x_H+x_A+x_B}{3}\\ y_C=\frac{y_H+y_A+y_B}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 1=\frac{x_H+2-4}{3}\\ -2=\frac{y_H+1+3}{3}\end{matrix}\right.\)
\(\Rightarrow (x_H,y_H)=(5; -10)\)
Vậy $H(5; -10)$