Cho biểu thức
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
a,Tìm điều kiện x để P xác định - Rút gọn P
b,Tìm các giá trị của x để P < 0
c,Tính giá trị của P khi x = \(4-2\sqrt{3}\)
ĐKXĐ: \(x\ge0;\)\(x\ne1\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(=\left(\frac{x}{\sqrt{x} \left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)
\(=\frac{x-1}{\sqrt{x}}\)
a) bổ sung ĐKXĐ nhé: \(x>0;\)\(x\ne1\)
b) \(P< 0\)
=> \(\frac{x-1}{\sqrt{x}}< 0\)
=> \(x-1< 0\) (do \(\sqrt{x}>0\))
=> \(x< 1\)
=> \(0< x< 1\)