cho hình tam giác ABC vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là tam giác ABD và tam giác ACE vẽ hình bình hành ADIE
a, CM: AI = BC và AI vuông góc với BC
b, CM: tam giác DAC = tam giác BAE
Mk đg cần gấp ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
∠ (BAD) + ∠ (BAC) + ∠ (DAE) + ∠ (EAC) = 360 0
Lại có: ∠ (BAD) = 90 0 , ∠ (EAC) = 90 0
Suy ra: ∠ (BAC) + ∠ (DAE) = 180 0 (1)
AE // DI (gt)
⇒ ∠ (ADI) + ∠ (DAE) = 180 0 (2 góc trong cùng phía)
Từ (1) và (2) suy ra: ∠ (BAC) = ∠ (ADI)
Xét ∆ ABC và ∆ DAI có:
AB = AD ( vì tam giác ABD vuông cân).
AC = DI ( = AE)
∠ (BAC) = ∠ (ADI) ( chứng minh trên)
Suy ra: ∆ ABC = ∆ DAI (c.g.c) ⇒ IA = BC
∆ ABC = ∆ DAI (chứng minh trên) ⇒ ∠ (ABC) = ∠ A 1 (3)
Gọi giao điểm IA và BC là H.
Ta có: ∠ A 1 + ∠ (BAD) + ∠ A 2 = 180 0 (kề bù)
Mà ∠ (BAD) = 90 0 (gt) ⇒ ∠ A 1 + ∠ A 2 = 90 0 (4)
Từ (3) và (4) suy ra: ∠ (ABC)+ ∠ A 2 = 90 0
Trong ∆ AHB ta có: ∠ (AHB) + ∠ (ABC)+ ∠ A 2 = 180 0
Suy ra ∠ (AHB) = 90 0 ⇒ AH ⊥ BC hay IA ⊥ BC
∠ E = ∠ (ECB) = 90 0 , ∠ B = 45 0
∠ B + ∠ (EAB) = 180 0 (hai góc trong cùng phía bù nhau)
⇒ ∠ (EAB) = 180 0 - ∠ B = 180 0 – 45 0 = 135 0
Tam giác ABC vuông tại A. Theo định lí Py-ta-go ta có:
A B 2 + A C 2 = B C 2 mà AB = AC (gt)
⇒ 2 A B 2 = B C 2 = 2 2 = 4
A B 2 = 2 ⇒ AB= √2(cm) ⇒ AC = √2 (cm)
Tam giác AEC vuông tại E. Theo định lí Py-ta-go ta có:
E A 2 + E C 2 = A C 2 , mà EA = EC (gt)
⇒ 2 E A 2 = A C 2 = 2
E A 2 = 1
⇒ EA = 1(cm) ⇒ EC = 1(cm)