Giải giúp mình bài này nhé
Tìm n thuộc N,m thuộc N sao cho 2mn + m - 3n =5
Giữa 2,m,n và 3,n là dấu nhân nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-x----M----------------O---------------N------A------y--
diem N nam giua
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
Bài 2:
Gọi d=ƯCLN (3n+2;5n+3)
Suy ra: 3n+2 chia hết cho d; 5n+3 chia hết cho d
Suy ra: 5.(3n+2) chia hết cho d; 3.(5n+3) chia hết cho d
Suy ra: 15n+10 chia hết cho d; 15n+9 chia hết cho d
Suy ra: (15n+10) - (15n+9) chia hết cho d
Suy ra: 1 chia hết cho d. Suy ra: d=1
Suy ra ƯCLN (3n+2;5n+3)=1
Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau
Muốn tìm \(n\in Z\) thì \(n+2\ne0\Rightarrow n\ne-2\)
\(\Rightarrow\)[(n+2)+5] chia hết cho (n +2)
\(\Rightarrow n+2\inƯ_{\left(5\right)}=\left\{-1;1;5;-5\right\}\)
\(\Rightarrow n\in\){-3;-1;3;-7}
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a: Để A là phân số thì n+3<>0
hay n<>-3
b: Để A là số nguyên thì \(3n-2⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-2;-4;8;-14\right\}\)