K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

\(P=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-16\\ P=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-16\\ P=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge-16\)

\(P_{min}=-16\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

20 tháng 9 2021

\(P=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-16\\ =\left(x-y+1\right)^2+\left(y-4\right)^2-16\\ \ge-16\)

dấu = xảy ra khi và chỉ khi y=4,x=3

6 tháng 9 2021

\(B=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-16\ge-16\)

Dấu \("="\Leftrightarrow x^2+x+2=0\Leftrightarrow x\in\varnothing\left(x^2+x+2>0\right)\)

Vậy dấu \("="\) ko xảy ra nên sẽ ko tính đc GTNN

6 tháng 9 2021

Em cảm ơn

 

8 tháng 11 2021

\(A=\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)+\left(x^2+2x+1\right)+1\\ A=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2+\left(x+1\right)^2+1\ge1\\ A_{min}=1\Leftrightarrow x=y=z=-1\)

3 tháng 10 2021

1) \(=\left(9x^2-25y^2\right)-\left(6x-10y\right)=\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)=\left(3x-5y\right)\left(3x+5y-2\right)\)

2) \(=9x^2y^2-\left(x^2-2xy+y^2\right)=9x^2y^2-\left(x-y\right)^2=\left(3xy-x+y\right)\left(3xy+x-y\right)\)

 

17 tháng 10 2021

\(\left(2x+x^2\right)\left(x^2-3x+2\right)=0\Leftrightarrow x\left(x+2\right)\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\\x=2\end{matrix}\right.\\ A=\left\{-2;0;1;2\right\}\)

\(3\le x^3\le27\Leftrightarrow x\in\left\{2;3\right\}\\ B=\left\{2;3\right\}\)

\(\Leftrightarrow A\cup B=\left\{-2;0;1;2;3\right\}\)

\(A=x^2-2x+2024\)

\(A=x^2-2x+1+2023=\left(x-1\right)^2+2023\ge2023\)

Min A = 2023 khi x = 1 

=x^2-2x+1+2023

=(x-1)^2+2023>=2023

Dấu = xảy ra khi x=1