Chứng minh : 7a−4b/7c+4d≐7a+4b/7c−4d
Biếta/b≐c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}=\frac{7a}{4c}=\frac{7b}{4d}\)
áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{7a+4b}{7c+4d}=\frac{7a-4b}{7c-4d}\)
\(=>\left(7a+4b\right).\left(7c-4d\right)=\left(7a+4b\right).\left(7c-4d\right)\)
\(=>\frac{7a-4b}{7c+4d}=\frac{7a+4b}{7c-4d}\left(dpcm\right)\)
đặt \(\frac{a}{b}\)= \(\frac{c}{d}=k\Rightarrow\hept{\begin{cases}k=ab\\k=cd\end{cases}}\)
ta có : \(\frac{7a-4b}{3a+5b}\)= \(\frac{7ak-4b}{3ak-5b}=\frac{a\left(7k-4\right)}{a\left(3k-5\right)}=\frac{7k-4}{3k-5}\left(1\right)\)
\(\frac{7c-4d}{3c+5d}\)=\(\frac{7ck-4d}{3ck+5d}\)= \(\frac{c\left(7k-4\right)}{c\left(3k+5\right)}\)= \(\frac{7k-4}{3k+5}\)( 2 )
từ (1) và ( 2) => \(\frac{7a-4b}{3a+5b}=\frac{7c-4d}{3c+5d}\)( điều phải chứng minh )
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{7k-4}{3k+5}\)
\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{7k-4}{3k+5}\)
Do đó: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)
b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có: \(\frac{7a-4b}{3a+5b}=\frac{7bk-4b}{3bk-5b}=\frac{b\left(7k-4\right)}{b\left(3k-5\right)}=\frac{7k-4}{3k-5}\)(1)
\(\frac{7c-4d}{3c+5d}=\frac{7dk-4d}{3dk+5d}=\frac{d\left(7k-4\right)}{d\left(3k+5\right)}=\frac{7k-4}{3k+5}\)(2)
Từ (1) và (2) suy ra \(\frac{7a-4b}{3a+5b}=\frac{7c-4d}{3c+5d}\)(đpcm)
vì a/b=c/d =>a/c=b/d
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a/c=b/d=a+b/c+d=a-b/c-d
vi a+b/c+d=a-b/c-d
=>a-b/a+b=c-d/c+d(dpcm)
- vì a/b=c/d=>a/c=b/d=>7a/7c=4b/4d
vì a/c=c/d=>3a/3c=5b/5d
áp dụng tính chất của dãy tỉ số bằng nhau ta có
a/c=b/d=7a-4b/7c-4d=3a+5b/3c+5d
vì 7a-4b/7c-4d=3a+5b/3c+5d
=>7a-4b/3a+5b=7c-4d/3c+5d(dpcm)
- vì a/b=c/d=>a/c=b/d=>a2/c2=b2/d2=ab/cd(1)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
a2/c2=b2/d2=a2+b2/c2+d2 (2)
a/c=b/d=c-a/d-b=>a2/c2=b2/d2=(c-a)2/(d-b)2 (3)
từ(1),(2) và (3)=>ac/bd=a2+c2/b2+d2=(c-a)2/(d-b)2
1/
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b,\(\frac{a}{b}=\frac{c}{d}=\frac{4a}{4b}=\frac{7c}{7d}=\frac{4a+7c}{4b+7d}\)
2/
Gọi số học sinh tham gia của mỗi lớp lần lượt là a,b,c
Ta có: \(2a=3b=4c\)
\(\Rightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{6+4+3}=\frac{130}{13}=10\)
=> a/6 = 10 => a = 60
b/4 = 10 => b = 40
c/3 = 10 => c = 30
Vậy số học sinh mỗi lớp lần lượt là 60 hs, 40 hs, 30hs