K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

\(\left(2x+1\right)\left(x+3\right)+\left(x+1\right)^2\left(x+2\right)+\left(x+5\right)\left(x+1\right)\)

\(=2x^2+6x+x+3+x^3+2x^2+x+2x^2+4x+2+x^2+x+5x+5\)

\(=x^3+7x^2+18x+10\)

đúng ko nhỉ?

14 tháng 10 2018

tham khảo : KHAI TRIỂN RÚT GỌN ĐA THỨC BẰNG CASIO (1LINK DUY NHẤT) - YouTube

NV
5 tháng 3 2022

\(f\left(x\right)=\sum\limits^3_{i=0}C_3^i\left(x+x^2\right)^i.\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k\left(2x\right)^k\)

\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}C_3^i.C_i^jx^j.\left(x^2\right)^{i-j}\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k.2^k.x^k\)

\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}\sum\limits^{15}_{k=0}C_3^iC_i^jC_{15}^k\left(\dfrac{1}{4}\right)^{3-i}.2^k.x^{2i+k-j}\)

Số hạng chứa \(x^{13}\) thỏa mãn:

\(\left\{{}\begin{matrix}0\le i\le3\\0\le j\le i\\0\le k\le15\\2i+k-j=13\end{matrix}\right.\) 

\(\Rightarrow\left(i;j;k\right)=\left(0;0;13\right);\left(1;0;12\right);\left(1;1;11\right);\left(2;0;11\right);\left(2;1;10\right);\left(2;2;9\right);\left(3;0;10\right);\left(3;1;9\right)\)

\(\left(3;2;8\right);\left(3;3;7\right)\) (quá nhiều)

Hệ số....

26 tháng 4 2023

Ta có: \(x.\left(C^k_n.a^{n-k}.b^k\right)=x.\left(C^k_5.a^{5-k}.b^k\right)=C^k_5.1^{5-k}.2^k.x^k.x\)

\(=C^k_5.2^k.x^{k+1}\)

Mà ta cần tìm số hạng của x5

\(\Rightarrow k+1=5\Leftrightarrow k=4\)

Vậy số hạng của x5 là: \(C^4_5.2^4=80\)

26 tháng 4 2023

Ta nhân thêm ''x'' vào số hạng tổng quát vì có ''x'' là nhân tử chung của mỗi số hạng trong khải triển

NV
13 tháng 11 2021

Tổng hệ số trong khai triển \(P\left(x\right)\) luôn luôn bằng \(P\left(1\right)\)

Do đó tổng hệ số là: \(\left(3-2.1\right)^9=1\)

29 tháng 12 2021

Chọn D

29 tháng 6 2017

\(=3x^2\left(x^2-1\right)+\left(x^8-3x^4+3x^2-1\right)-\left(x^8-1\right)\)

\(=3x^4-3x^2+x^8-3x^4+3x^2+1-x^8+1\)

\(=2\)

=2 nha ban

(con cach lam ban nhan dang thuc len rui rut gon lai)

23 tháng 6 2017

a) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x+1\right)\cdot\left[x\cdot\left(x-1\right)-\left(x^2-x+1\right)\right]\)

\(=\left(x+1\right)\left(x^2-x-x^2+x-1\right)\)

\(=\left(x+1\right)\cdot\left(-1\right)\)

\(=-1\left(x+1\right)\)

b) \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+8\right)+\left(3x+12\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3x^2-3x+12x-12\)

\(=x^3-1-x^3-8+12x-12\)

\(=-21+12x\)

c) \(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)

\(=3x^2\left(x^2-1\right)+x^6-3x^4+3x^2-1-\left(x^6-1\right)\)

\(=3x^4-3x^2+x^6-3x^4+3x^2-1-x^6+1\)

\(=0\)

24 tháng 6 2017

câu b bạn làm sai rồi í!