Cho x>0,y>0,x+y>hoặc=6.CMR:P=(5x^2y+3xy^2+16x+12y)/xy thì > hoặc =3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, x\(^2\) - 5x = 0
\(\Rightarrow\)x(x-5) = 0
Th1: x = 0
Th2: x- 5 =0
x = 5
2, \(|x-9|\) .( -8) = - 16
\(|x-9|\) = (- 16). ( -8) = 128
Th1: x - 9 = 128
x = 128 + 9 = 137
Th2: x - 9 = - 128
x = -128 + 9 = - 119
3, Th1: 4- 5x = 24
5x = 4- 24 = -20
x = - 20 :5 = -4
Th2: 4- 5x = -24
5x = 4- (-24) = 28
x = 28 :5= 5,6
Vì x < hoặc = 0 \(\Rightarrow\) x = -4
4, x.( x - 2) > 0
\(\Rightarrow\) x và ( x- 2) cùng dấu
Th1: x và (x -2) cùng dương
+ \(\Rightarrow\) x > 0
+ (x - 2) > 0 \(\Rightarrow\) x > 2
Th2: x và ( x- 2) cùng âm
+ \(\Rightarrow\) x < 0
+ ( x - 2) < 0 \(\Rightarrow\) x < 2
Từ 2 trường hợp trên \(\Rightarrow\) x > 2 hoặc x <2
5, x.( x - 2) < 0
\(\Rightarrow\) x và ( x- 2) khác dấu
Th1: x âm và ( x- 2) dương
+ \(\Rightarrow\) x < 0
+ (x -2 ) > 0 \(\Rightarrow\) x > 2
Th2: x dương và ( x- 2 ) âm
+ \(\Rightarrow\) x >0
+ (x - 2) < 0 \(\Rightarrow\) x < 2
a) Ta có: \(2x^2+3xy+2y^2\)
\(=2\left(x^2+\dfrac{3}{2}xy+y^2\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{3}{4}y+\dfrac{9}{16}y^2+\dfrac{7}{16}y^2\right)\)
\(=2\left(x+\dfrac{3}{4}y\right)^2+\dfrac{7}{8}y^2\ge0\forall x,y\)(đpcm)
B6:
Ta có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)
=> \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c\)
Mà theo đề bài \(5a-3b+2c=0\)
=> \(P\left(-1\right)+P\left(-2\right)=0\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
Thay vào ta được: \(P\left(-1\right).P\left(-2\right)=-P\left(-2\right).P\left(-2\right)=-P\left(-2\right)^2\le0\left(\forall a,b,c\right)\)
=> đpcm
B5:
Ta có:
P+Q+R
= 5x2y2-xy-2y3-y2+5x4-2x2y2-5xy+y3-3y2+2x4-x2y2+6xy+y3+6y2+7
= x2y2+2y2+7x4+7
Mà \(x^2y^2\ge0;2y^2\ge0;7x^4\ge0\left(\forall x,y\right)\)
=> \(x^2y^2+2y^2+7x^4+7\ge7\)
=> Tổng 3 đa thức P,Q,R luôn dương
=> Trong 3 đa thức đó luôn tồn tại 1 đa thức lớn hơn 0
=> đpcm