K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

(x^2-x+2)^2+(x-2)^2 
= [(x^2-x+2)+(x-2)]^2-2[(x^2-x+2)*(x-2)] (áp dụng (a^2+b^2)=(a+b)^2-2ab 
=(x^2)^2- 2((x^3-3x^2+4x-4) 
=x^4-2x^3+6x^2-8x+8 
 giờ phân tích đa thức 
x^4-2x^3+6x^2+8x-8 
=(x^4-2x^3+2x^2)+(4x^2-8x+8) (cái này làm bài tập nhiêu nhìn ra nhanh) 
=[x^2(x^2-2x+2)]+4(x^2-2x+2) dẹp luôn 
=(x^2-2x+2)(x^2+4) 

13 tháng 10 2018

\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)

\(=\left[\left(x-2\right)\left(x+1\right)\right]^2+\left(x-2\right)^2\)

\(=\left(x-2\right)^2\left(x+1\right)^2+\left(x-2\right)^2\)

\(=\left(x-2\right)^2\left(x^2+2x+1\right)+\left(x-2\right)^2\)

\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)

17 tháng 8 2018

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

14 tháng 8 2018

x^4+6x^2y+9y^2-1
=(x^2+3y)^2-1
=(x^2+3y+1)(x^2+3y-1)

18 tháng 10 2020

(x2 + x)2 - 2(x2 + x) - 15

= [(x2 + x)2 - 2(x2 + x) + 1] - 16

= (x2 + x + 1)2 - 42

= (x2 + x + 5)(x2 + x - 3)

18 tháng 10 2020

( x2 + x )2 - 2 ( x2 + x ) - 15

Đặt t = x2 + x , đa thức trở thành

t- 2t - 15

= ( t2 + 3t ) - ( 5t + 15 )

= t ( t + 3 ) - 5 ( t + 3 )

= ( t - 5 ) ( t + 3 )

= ( x2 + x - 5 ) ( x2 + x + 3 )