tìm cac số nguyên x,y sao cho 3x2+4y2+6x+3y-4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy+6x-3y-22=0\)
\(\Leftrightarrow2x\left(y+3\right)-3y-9=13\)
\(\Leftrightarrow\left(2x-3\right)\left(y+3\right)=13\)
Vì \(x,y\)là các số nguyên nên \(2x-3,y+3\)là các ước của \(13\).
Ta có bảng giá trị:
2x-3 | -13 | -1 | 1 | 13 |
y+3 | -1 | -13 | 13 | 1 |
x | -5 | 1 | 2 | 8 |
y | -4 | -16 | 10 | -2 |
Lời giải:
$3x^2+x=4y^2+y$
$\Leftrightarrow 4(y^2-x^2)+(y-x)=-x^2$
$\Leftrightarrow (y-x)[4(x+y)+1]=x^2$
$\Leftrightarrow (x-y)[4(x+y)+1]=x^2$
Gọi $d=(x-y, 4x+4y+1)$
Khi đó: $x-y\vdots d(1); 4x+4y+1\vdots d(2)$. Mà $x^2=(x-y)(4x+4y+1)$ nên $x^2\vdots d^2$
$\Rightarrow x\vdots d(3)$.
Từ $(1); (3)\Rightarrow y\vdots d$
Từ $x,y\vdots d$ và $4x+4y+1\vdots d$ suy ra $1\vdots d$
$\Rightarrow d=1$
Vậy $x-y, 4x+4y+1$ nguyên tố cùng nhau. Mà tích của chúng là scp $(x^2)$ nên bản thân mỗi số trên cũng là scp.
Đặt $4x+4y+1=t^2$ với $t$ tự nhiên.
Khi đó: $A=2xy+4(x+y)^3+x^2+y^2=(x+y)^2+4(x+y)^3=(x+y)^2[1+4(x+y)]$
$=(x+y)^2t^2=[t(x+y)]^2$ là scp
Ta có đpcm.
`9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0`
`<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0`
`<=> (3x + y - 1)2 = 37 - 2(y + 1)^2`
Vì `(3x+y=1)^2>=0`
`=>2(y+1)^2<=37`
`=>(y+1)^2<=37/2`
Mà `(y+1)^2` là scp
`=>(y+1)^2 in {0,1,4,8,16}`
`=> y + 1 ∈{0; 1; -1; 2; -2; 3; -3; 4; -4}`
`=>y in {-1,0,-2,1,-3,2,-4,3,-5}`
Đến đây dễ rồi thay y vào rồi tìm x thôi!
a)bậc của da thức 2x-5xy+3x2 là:5
b)bậc của da thức ax2+2x2 là:4
c)bậc của da thức ax3+2xy là:5
d)bậc của da thức 4y2-3y4 là:6
e)bậc của da thức -3x5-\(\dfrac{1}{2}\)x3y-\(\dfrac{3}{4}\)xy2+3x5+2 là:17