K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2015

[(2n+1)(2n+2)(2n+3)(2n+4):12]+(n+1)

DD
25 tháng 2 2021

\(A=1.3+3.5+5.7+...+\left(2n+1\right)\left(2n+3\right)\)

\(6A=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+\left(2n+1\right)\left(2n+3\right)\left(2n+5-2n+1\right)\)

\(6A=3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)\)

\(+\left(2n+1\right)\left(2n+3\right)\left(2n+5\right)\)

\(6A=\left(2n+1\right)\left(2n+3\right)\left(2n+5\right)+3\)

\(A=\frac{\left(2n+1\right)\left(2n+3\right)\left(2n+5\right)+3}{6}\)

3 tháng 6 2018

\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{45.47}\)

\(C=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{45}-\frac{1}{47}\right)\)

\(C=\frac{5}{2}.\left(1-\frac{1}{47}\right)\)

\(C=\frac{5}{2}.\frac{46}{47}\)

\(C=\frac{115}{47}\)

3 tháng 6 2018

= 205/101 nha

9 tháng 8 2017

\(A=\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{2n-1-\left(n-14\right)}{n+8}=\frac{n+13}{n+8}\)

Để A thuộc Z thì \(n+13⋮n+8\Rightarrow n+13-\left(n+8\right)⋮n+8\)

\(\Rightarrow5⋮n+8\Rightarrow n+8\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)

\(\Leftrightarrow n\in\left\{-7;-3;-9;-13\right\}\)

OK

17 tháng 8 2017

hi lily

7 tháng 1 2018

Ai làm hộ mk ik mk mơn nhìu 😘😘

7 tháng 1 2018

^ la gi

28 tháng 3 2016

NHỚ PHẢI TÍCH TỚ ĐẤY

S=1-1/2-1/3+....+1/29-1/30

=1-1/30

=29/30

28 tháng 3 2016

S = 1/1x1/2+1/2x1/3+1/3x1/4+...+1/28x1/29+1/29+1/30

S = 1/1-1/2+1/2-1/3+1/3-1/4+...+1/28-1/29+1/29+1/30

Đến đây ta triệt tiêu,còn lại:

S = 1/1-1/30

S = 29/30

Mình chắc chắn lun!

21 tháng 12 2015

1)Gọi số tự nhiên cần tìm có dạng ab

Ta có: ab*45=ab2

nên ab=45

Vậy số cần tìm là 45

2)a.Ta có: n và 2n có tổng các chữ số bằng nhau

nên n chia 9 dư p

nên 2n chia 9 dư p

nên 2n-n chia hết cho 9 hay n chia hết cho 9

 hờ hờ, các câu còn lại lười lm 

27 tháng 8 2016

a.1/6

b.9,9 m

28 tháng 8 2016

a,1/6

b,9.9m

k nha

Bài 1:

Ta có:

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

b, Đặt  \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)

Bài 2:

Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)

\(\Rightarrow\left(2n+1;3n+2\right)=1\)

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản

11 tháng 2 2018

1.          Giải 

a,  \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)

\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

b,   \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)

2.    Giải 

Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*) 

=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)

=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d

=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)

=> (6n + 4) - (6n + 3) \(⋮\)

=> 1 \(⋮\)

=> d = 1 

Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản