K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

A B C H K O D E F P Q

a)  +) Gọi P và Q lần lượt là hình chiếu của O trên các đường thẳng AB và AC.

Tứ giác AHKO là hình chữ nhật => OA // HK hay OA // BC => ^FAO = ^ABC; ^EAO = ^ACB

Mà ^ABC = ^ACB = 450 => ^FAO = ^EAO = 450. Do đó: AO là tia phân giác ^EAF 

Xét góc EAF: AO là phân giác ^EAF; OP vuông góc AF; OQ vuông góc AE

=> AP = AQ và OP = OQ (T/c điểm nằm trên đường phân giác)

Xét \(\Delta\)OQE và \(\Delta\)OPF có: ^OQE = ^OPF (=900); OQ = OP; OE = OF

=> \(\Delta\)OQE = \(\Delta\)OPF (Cạnh huyền, cạnh góc vuông) => QE = PF (2 cạnh tương ứng)

Ta có: AQ = AP; QE = PF (cmt) => AQ + QE = AP + PF => AE =AF

Xét \(\Delta\)AEF: ^EAF = 900; AE = AF (cmt) => \(\Delta\)AEF vuông cân tại A (đpcm)

+) Ta thấy \(\Delta\)AEF vuông cân ở A (cmt) => ^AFE = 450 hay ^DFE = 450

Xét (O) có: ^DFE là góc nội tiếp đường tròn (O)

=> \(\widehat{DFE}=\frac{1}{2}.sđ\widebat{DE}\)=> ^DOE = 2.^DFE = 900 => DO vuông góc OE (đpcm).

b) Xét tứ giác  DAOE có: ^DAE = ^DOE (=900) => Tứ giác DAOE nội tiếp đường tròn (DE)

hay 4 điểm D;A;O;E cùng nằm trên 1 đường tròn (đpcm).

5 tháng 9 2015

Tam giác MBH nội tiếp đường tròn tâm I đường kính BH 

=> Tam giác MHB vuông tại M => MH vg AB => AMH = 90 độ 

Tam giác HNC nội tiếp đường tròn tâm O đk HC => Tam giác NHC vuông tại N 

=> ANH = 90 độ 

TG NAMH có ANH = HMA = MAN = 90 độ 

=> NAMH là HCN . Gọi MN giao AH tại O => OM = OH ; ON = OH ( tính chất HCN)

Tam giác BMH vuông tại M có MI là trung tuyến => MI = IH = 1/2 BH => Tam giác IMH cân tại I 

=> IMH = IHM (1)

Tam giác OMH có OM = OH => tam giác OMH cân tại O => OMH = OHM (2)

Từ (1) và (2) => IMH + OMH = IHM + OHM => OMI = IHO = 90 độ 

=> MN vg IM  

=> MN là tiếp tuyến đường tròn tâm I (*)

CM tương tự MN vg NK => MN là tiếp tuyến đường tròn tâm K (**)

Từ (*) và(**) => MN là tiếp tuyến chung của đường tròn tâm I và K  

 

a: góc AEH=1/2*180=90 độ

=>HE vuông góc AB

góc AFH=1/2*180=90 độ

=>HF vuông góc AC

Vì góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: AEHF làhình chữ nhật

=>góc AFE=góc AHE=góc B

=>góc B+góc FCB=180 độ

=>BEFC nội tiếp

17 tháng 2 2022

Xét đường tròn đương kính BH có : ^BEH = 900 ( góc nt chắn nửa đường tròn ) 

Xét đường tròn đường kính CH có : ^HFC = 900 ( góc nt chắn nửa đường tròn ) 

=> ^AEH = ^AFH = 900

Xét tứ giác AEHF có ^AEH + ^AFH = 1800

mà 2 góc này đối 

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

b, Xét tam giác AHB vuông tại H, đường cao HF 

Ta có : AH^2 = AE.AB (1)

Xét tam giác AHC vuông tại H, đường cao HE 

Ta có : AH^2 = AF.AC (2)

Từ (1) ; (2) suy ra AE.AB = AF.AC 

26 tháng 11 2022

a: 

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\)(cm)

=>AH=6*8/10=4,8(cm)

=>MN=4,8(cm)

c: góc IMN=góc IMH+góc NMH

=góc IHM+góc NAH

=góc HAC+góc HCA=90 độ

=>MN là tiếp tuyến của (I)

góc KNM=góc KNH+góc MNH

=góc KHN+góc MAH

=góc BAH+góc HBA=90 độ

=>MN là tiếp tuyến của (K)