Giúp mình câu b vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Ta có \(\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\)
\(=\dfrac{\sqrt{n-1}-\sqrt{n}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n-1}-\sqrt{n}\right)}\\ =\dfrac{\sqrt{n-1}-\sqrt{n}}{n-1-n}=\sqrt{n}-\sqrt{n-1}\)
Thay vào A
\(A=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\\ A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\\ A=\sqrt{n}-1\)
\(b,\) Ta có \(\dfrac{1}{\sqrt{n-1}-\sqrt{n}}=\dfrac{\sqrt{n-1}+\sqrt{n}}{\left(\sqrt{n-1}-\sqrt{n}\right)\left(\sqrt{n-1}+\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n-1}+\sqrt{n}}{n-1-n}=-\sqrt{n-1}-\sqrt{n}\)
Thay vào B
\(B=\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\\ B=-1-\sqrt{2}-\left(-\sqrt{2}-\sqrt{3}\right)-...-\left(-\sqrt{24}-\sqrt{25}\right)\\ B=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{24}+\sqrt{25}\\ B=\sqrt{25}-1\)
\(a,\Leftrightarrow m-1>0\Leftrightarrow m>1\\ b,m=2\Leftrightarrow y=x+1\)
Bạn tự vẽ đi
\(c,\) PT hoành độ giao điểm: \(\left(m-1\right)x+2m-3=2x+1\)
Mà 2 đt cắt nhau tại 1 điểm trên trục tung nên x=0
\(\Leftrightarrow2m-3=1\\ \Leftrightarrow m=2\)
a:
pthđgđ là:
1/2x^2-x-2=0
=>x^2-2x-4=0
=>x^2-2x+1-5=0
=>(x-1)^2=5
=>x=căn 5+1 hoặc x=-căn 5+1
=>y=3+căn 5 hoặc y=3-căn 5
b: C(x;0); D(0;y)
=>vecto CD=(-x;y)
=>vecto DC=(x;-y)
vecto AB=(-2căn 5;-2căn 5)
Để ABCD là hbh thì vecto AB=vecto DC
=>x=-2căn 5 và y=2căn 5
=>C(-2căn5;0); D(0;2căn 5)
a: Tọa độ điểm G là:
\(\left\{{}\begin{matrix}x_G=\dfrac{1-4+0}{3}=-1\\y_G=\dfrac{3-1-2}{3}=0\end{matrix}\right.\)
\(\overrightarrow{AB}=\left(-5;-4\right)\)
\(\overrightarrow{AC}=\left(-1;-5\right)\)
Vì \(\overrightarrow{AB}< >\overrightarrow{AC}\) nên ba điểm A,B,C không thẳng hàng
hay ΔABC nhọn
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE
=>ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
a: \(25x^2-16=0\)
=>(5x-4)(5x+4)=0
=>x=4/5 hoặc x=-4/5
b: \(-3x^2+18x=0\)
\(\Leftrightarrow3x^2-18x=0\)
=>3x(x-6)=0
=>x=0 hoặc x=6
\(25x^2-16=0\Leftrightarrow\left(5x\right)^2=16\)
\(\Leftrightarrow5x=\sqrt{4^2}=\left|4\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=4\Leftrightarrow x=\dfrac{4}{5}\\5x=-4\Leftrightarrow x=\dfrac{-4}{5}\end{matrix}\right.\)
Vậy \(x=\pm\dfrac{4}{5}\)
a. Định luật:
- Tia phản xạ nằm trong mặt phẳng với tia tới và đường pháp tuyến của gương tại điểm tới.
- Góc phản xạ luôn luôn bằng góc tới.
Em tham khảo:
b.