K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: \(=\left(1-2x\right)\left(1+2x\right)\)

 

24 tháng 10 2021

a:

=x(x2-y2-10x+25)

=x((x2-10x+25)-y2)

=x((x-5)2-y2)

=x(x-5-y)(x-5+y)

b

=>8x(x-5)-3(x-5)=0

=>(x-5)(8x-3)=0

x-5=0=>x=5 hoặc 8x-3=0=>x=3/8

 

 

23 tháng 12 2021

b: =(x-5)(x+3)

f: \(=\left(2x+3\right)^2\)

23 tháng 12 2021

\(a,=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ b,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ c,=5x^2y^3\left(1-5xy+2x\right)\\ d,=6y\left(2x^2-3xy-10y\right)\\ e,,=\left(x-y\right)\left(5-x\right)\\ f,=\left(2x+3\right)^2\)

a) Ta có: \(x^2-3x+xy-3y\)

\(=x\left(x-3\right)+y\left(x-3\right)\)

\(=\left(x-3\right)\left(x+y\right)\)

b) Ta có: \(x^3+10x^2+25x-xy^2\)

\(=x\left(x^2+10x+25-y^2\right)\)

\(=x\left(x+5-y\right)\left(x+5+y\right)\)

c) Ta có: \(x^3+2+3\left(x^3-2\right)\)

\(=4x^3-4\)

\(=4\left(x-1\right)\left(x^2+x+1\right)\)

Ta có: \(1+6x-6x^2-x^3\)

\(=-x^3-6x^2+6x+1\)

\(=\left(-x^3+1\right)-6x\left(x-1\right)\)

\(=-\left(x-1\right)\left(x^2+x+1\right)-6x\cdot\left(x-1\right)\)

\(=\left(x-1\right)\left(-x^2-x-1-6x\right)\)

\(=-\left(x-1\right)\left(x^2+7x+1\right)\)

17 tháng 8 2021

\(1+6x-6x^2-x^3\)

= (1-x^3)+(6x-6x^2)

=(1-x)(1+x+x^2)+6x(1-x)

=(1-x)( 1+ x+ x^2 + 6x)

=(1-x)(1+x^2 +7x)

Đây bạn ơi!

21 tháng 8 2021

undefined

1: \(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)

2: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)

3: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)

21 tháng 8 2021

1) \(x^2-3x+2=\left(x^2-x\right)-\left(2x-2\right)=x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)

2) \(x^2-x-6=\left(x^2-3x\right)+\left(2x-6\right)=x\left(x-3\right)+2\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

3) \(x^2+7x+12=\left(x^2+3x\right)+\left(4x+12\right)=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)

1: \(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)

2: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)

3: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)

26 tháng 10 2021

1. Ta có: hằng đẳng thức: \(x^3+y^3+z^3=3xyz\) nếu x+y+z=0

đặt b-c=x, c-a=y, a-b=z⇒x+y+z=0

 \(\Rightarrow\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3=3\left(a-b\right)\left(c-a\right)\left(b-c\right)\)

2. \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

3. Tham khảo: https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-y-5-x-5-y-5-thanh-nhan-tu-faq447273.html

26 tháng 10 2021

\(5,=x^3+2x^2y-7x^2y-14xy^2\\ =x^2\left(x+2y\right)-7xy\left(x+2y\right)\\ =x\left(x-7y\right)\left(x+2y\right)\)