Tìm GTNN của biểu thức:
A=\( \left(\left|x-3\right|+2\right)^2\)+|y+3|+2018
Với x,y là các số không âm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(a=x^2,b=y^2\left(a,b\ge0\right)\)thì \(P=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
Zì \(a,b\ge0\)nên
\(\left(a-b\right)\left(1-ab\right)=a-a^2b-b+ab^2\le a+ab^2=a\left(1+b^2\right)\le a\left(1+2b+b^2\right)=a\left(1+b\right)^2\)
Lại có \(\left(1+a\right)^2=\left(1-a\right)^2+4a\ge4a\)
=>\(P\le\frac{a\left(1+b\right)^2}{4a\left(1+b\right)^2}=\frac{1}{4}\)
dấu "=" xảy ra khi zà chỉ khi\(\hept{\begin{cases}a=1\\b=0\end{cases}=>\hept{\begin{cases}x=\pm1\\y=0\end{cases}}}\)
zậy \(maxP=\frac{1}{4}khi\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)
\(\left(x^2;y^2\right)=\left(a;b\right)\Rightarrow P=\dfrac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
Ta có:
\(\left(a+b\right)\left(1+ab\right)-\left(a-b\right)\left(1-ab\right)=2b\left(a^2+1\right)\ge0;\forall a;b\ge0\)
\(\Rightarrow\left(a+b\right)\left(1+ab\right)\ge\left(a-b\right)\left(1-ab\right)\)
\(\Rightarrow P\le\dfrac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\le\dfrac{\left(a+b+1+ab\right)^2}{4\left(1+a\right)^2\left(1+b\right)^2}=\dfrac{1}{4}\)
\(P_{max}=\dfrac{1}{4}\) khi \(\left(a;b\right)=\left(1;0\right)\) hay \(\left(x;y\right)=\left(1;0\right)\)
\(P=\dfrac{\left[\left(x-y\right)\left(1+xy\right)\right]\left[\left(x+y\right)\left(1-xy\right)\right]}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Áp dụng BĐT Cosi ta có:
\(\left(x-y\right)\left(1+xy\right)\le\dfrac{\left(x-y\right)^2+\left(1+xy\right)^2}{2}=\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{2}\\ \left(x+y\right)\left(1-xy\right)\le\dfrac{\left(x+y\right)^2+\left(1-xy\right)^2}{2}=\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{2}\)
\(\to P\le\dfrac{\left(1+x^2\right)^2\left(1+y^2\right)^2}{4\left(1+x^2\right)^2\left(1+y^2\right)^2}=\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{8}{\left(a+b\right)^2}\forall a;b>0\)
Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Mà \(ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{8}{\left(a+b\right)^2}\) (đpcm)
Áp dụng ta được :
\(P=\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(\frac{y}{2}+1\right)^2}+\frac{8}{\left(z+3\right)^2}\ge\frac{8}{\left(x+\frac{y}{2}+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)
\(\ge\frac{64}{\left(x+\frac{y}{2}+z+5\right)^2}\)
Ta có : \(\left(x^2+1\right)+\left(y^2+4\right)+\left(z^2+1\right)\ge2x+4y+2z\)
\(\Leftrightarrow3y+6\ge2x+4y+2z\Rightarrow6\ge2x+y+2z\)
\(\Rightarrow x+\frac{y}{2}+z\le3\)\(\Rightarrow P\ge\frac{64}{\left(3+5\right)^2}=1\)
Vậy Min P = 1 Tại \(x=1;y=2;z=1\)
em ko hiểu mọi người thích cái người ? tk cho mà lại thích nhỉ
em thì thích OLM lựa chọn để có điểm cơ như thế mới có điểm .
Sử dụng BĐT Cauchy Schwarz ta dễ có:
\(P=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
\(\ge\frac{\left(x+y\right)^2}{x+y-2}\)
Ta cần chứng minh: \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\)
\(\Leftrightarrow\left(x+y\right)^2-8\left(x+y\right)+16\ge0\)
\(\Leftrightarrow\left(x+y-4\right)^2\ge0\)( ĐPCM )
Có : \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Theo BĐT Cô - si ta có :
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=4x\)
\(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Do đó ; \(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4.\left(x+y-2\right)\ge4\left(x+y\right)\)
\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
Hay : \(P\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)
Vậy \(P_{min}=8\) khi \(x=y=2\)
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)
Ta có: \(\left(\left|x-3\right|+2\right)^2\ge0\forall x\) không âm
\(\left|y+3\right|\ge3\forall y\) không âm
Cộng theo vế 2 BĐT trên ta có:
\(A=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018\ge0+3+2018=2021\)
Vậy \(A_{min}=2021\Leftrightarrow\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=0\\\left|y+3\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)