Phân tích đa thức thành nhân tử:\(x\left(y^2-x^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=-y^3-xy^2+x^2y+x^3-z^3-yz^2+y^2z+y^3-x^3-zx^2+z^2x+z^3\)
\(=-xy^2+x^2y-yz^2+y^2z-zx^2+z^2x\)
\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\)
nâng cao phát triển toán 8 tập 1 mình ngại viết nên bạn vào đó xem nhé
Ây za,mik ko bt có đúng ko nhưng mik thử làm nhé.
Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)
\(\Rightarrow M=2a-b^2-2bc^2+c^4\)
\(M=2a-2b^2+b^2-2bc^2+c^4\)
\(M=2\left(a-b^2\right)+\left(b-c^2\right)^2\)
Mà:
\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(b-c^2=-2\left(xy+yz+zx\right)\)
Khi đó:
\(M=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(xy+yz+zx\right)^2\)
\(M=-4x^2y^2-4y^2z^2-4z^2x^2+4x^2y^2++4y^2z^2+4z^2x^2+4z^2x^2+8x^2yz+8xy^2z+8xyz^2\)
\(M=8xyz\left(x+y+z\right)\)
cái này = (x+y)(y+z)(z+x)
cái này mình học nhìn quen rồi còn bạn giải từ chỗ mình vừa viết ở trên rồi giải ngược lại nhé
Câu hỏi của Lee Min Ho - Toán lớp 8 - Học toán với OnlineMath
P=x2(y-z) + y2z - y2x + z2x-z2y
=x2(y-z) + yz(y-z) - x(y-z)(y+z)
=(y-z)(x2+yz-xy-xz)
=(y-z)[x(x-z)-y(x-z)]
= (x-y)(y-z)(x-z)
P=x2(y-z)+y2(z-x)+z2(x-y)
=x2(y-z)-y2[(y-z)+(x-y)]+z2(x-y)
=(y-z)(x2-y2)-(x-y)(y2-y2)
=(y-z)(x+y)(x-y)-(x-y)(y+z)(y-z)
=(y-z)(x-y)(x-z)
Câu hỏi của Lee Min Ho - Toán lớp 8 - Học toán với OnlineMath