A = \(\dfrac{4+\sqrt{3}}{\sqrt{1}+\sqrt{3}}+\dfrac{6+\sqrt{8}}{\sqrt{3}+\sqrt{5}}+...+\dfrac{2n+\sqrt{n^2-1}}{\sqrt{n-1}+\sqrt{n+1}}+\dfrac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)
B= \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}+\dfrac{1}{\sqrt{4}-\sqrt{5}}-....+\dfrac{1}{\sqrt{100}-\sqrt{101}}\)