Cho a,b,c , (a+b+c) là các số thực khác 0 thỏa mãn các điều kiện:
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
Tính giá trị biểu thức A=a2013+b2013+c2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>a=-b hoặc a=-c hoặc b=-c (1)
=>a=1 hoăc b=1 hoặc c=1 (2)
từ 1 và 2 => Q=1
Ta có:
\(a^3+b^3+c^3=3abc\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Do a+b+c khác ) nên:
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\frac{1}{2}[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]=0\)
\(\Rightarrow a=b=c\)
Do đó:
Q=\(\frac{a^2+3b^2+5c^2}{\left(a+b+c\right)^2}=\frac{9a^2}{9a^2}=1\)
có giá trị ko đổi