K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

14 tháng 8 2016

1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)

Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16

Do đó, n là ước chung của 980 và 616.

Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.

Suy ra n là ước của 28.

Mà n>16 nên n=28.

Đáp số: n=28.

12 tháng 10 2017

1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.

2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )

3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13

Được cập nhật Bùi Văn Vương 

1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)

Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16

Do đó, n là ước chung của 980 và 616.

Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.

Suy ra n là ước của 28.

Mà n>16 nên n=28.

3 tháng 2 2019

Toi quen mat cach  lam roi xin loi nhe

30 tháng 7 2018

a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ    \(n\ne3\)

+, Nếu n - 3 = -1 thì n = 2

+' Nếu n - 3 = 1 thì n =  4 

+, Nếu n - 3 = -7 thì n = -4                                                                                                                                                                            +, Nếu n - 3 = 7 thì n = 10

Vậy n \(\in\left\{2;4;-4;10\right\}\)

b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)

+, Nếu n + 2 = -1 thì n = -1

+, Nếu n + 2 = 1 thì n = -1

+, Nếu n + 2= 2 thì n = 0

+, Nếu n + 2 = -2  thì n = -4

+, Nếu n + 2 = 3 thì n = 1

+, Nếu n + 2 = -3 thì n = -5

+, Nếu n + 2= 6 thì n = 4

+, Nếu n + 2 = -6 thì n = -8

Vậy cx như câu a nhá 

c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)

Bạn làm tương tự như 2 câu trên nhá

d,

 Để 3n+ 2chia hết cho n-1  thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)

Rồi lm tương tự 

Chúc bạn làm tốt 

n+4:n+2

n+2+2:n+2

ma n+2:n+2

suy ra 2:n+2

n+2 là ước của 2

ước của 2 là :1,-1,2,-2

n+2=1 suy ra n=1-2 suy ra n=?

các trường hợp khác làm tương tự nhà và cả phần b nữa

3n+7:n+1

(3n+3)+3+7:n+1

3(n+1)+10:n+1

ma 3(n+1):n+1

suy ra 10:n+1 va n+1 thuoc uoc cua 10

den day lam nhu phan tren la duoc 

nhớ **** mình nha

6 tháng 1 2018

n + 4\(⋮\)n+2
=> ( n + 2) + 2 \(⋮\)n + 2  mà n + 2\(⋮\)n+2
=>2 \(⋮\)n+ 2
=> n +2\(\in\)Ư(2)={1;2}
=> n \(\in\){ -1:0} mà n \(\in\)N
=> n\(\in\){0}
    Vậy n= 0

6 tháng 12 2017

a) Ta có:

\(5⋮n+1\)

\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)

Vậy \(n\in\left\{0;4\right\}\)

b) Ta có:

\(15⋮n+1\)

\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)

Vậy \(n\in\left\{0;2;4;14\right\}\)

c) Ta có:

\(n+3⋮n+1\)

\(\Rightarrow\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{0;1\right\}\)

d) Ta có:

\(4n+3⋮2n+1\)

\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)

\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow2n+1=1\)

\(\Rightarrow n=0\)

Vậy \(n=0\)