K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

Phương trình cho \(\Leftrightarrow x^3-2x^2+3x-y^3-1=0\)(1)

\(\Leftrightarrow y^3=x^3-2x^2+3x-1\)(2)

Ta có: \(\left(x-1\right)^3=x^3-3x^2+3x-1\le x^3-2x^2+3x-1=y^3\)(Do \(3x^2\ge2x^2\ge0\))

Lại có: \(\left(x+1\right)^3=x^3+3x^2+3x+1=\left(x^3-2x^2+3x-1\right)+5x^2+2>y^3\)

Do đó: \(\left(x-1\right)^3\le y^3< \left(x+1\right)^3\Rightarrow x-1\le y< x+1\)

Mà y thuộc Z nên \(\orbr{\begin{cases}y=x\\y=x-1\end{cases}}\)

+) Với y=x, thay vào (1) ta được: \(-2x^2+3x-1=0\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow2x^2-2x-x+1=0\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\left(l\right)\end{cases}}\)\(\Rightarrow x=y=1\)

+) Với y = x-1; thay vào (2), ta được:

\(x^3-2x^2+3x-1=\left(x-1\right)^3\Leftrightarrow x^2=0\Rightarrow x=0\)\(\Rightarrow y=-1\)

Vậy các cặp nghiệm nguyên t/m pt cho là \(\left(x;y\right)\in\left\{\left(1;1\right);\left(0;-1\right)\right\}.\)

7 tháng 10 2018

hhcjggcjjdhdkfjfghn

fcfdcfgfvg

12 tháng 12 2021

Ta có \(y^2=3-2\left|2x+3\right|\ge0\Leftrightarrow0\le\left|2x+3\right|\le\dfrac{3}{2}\)

Mà \(x,y\in Z\Leftrightarrow\left|2x+3\right|\in\left\{0;1\right\}\)

Với \(\left|2x+3\right|=0\Leftrightarrow x=-\dfrac{3}{2}\left(loại\right)\)

Với \(\left|2x+3\right|=1\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\Leftrightarrow y^2=1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-1;1\right);\left(-1;-1\right);\left(-2;1\right);\left(-2;-1\right)\)

26 tháng 10 2020

\(x^3-2x^2+3x=y^3+1\Leftrightarrow x^3-2x^2+3x-1=y^3\)

Ta có: \(y^3-\left(x+1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3+3x^2+3x+1\right)=-5x^2-2< 0\Rightarrow y^3< \left(x+1\right)^3\Rightarrow y< x+1\)(1)

\(y^3-\left(x-1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3-3x^2+3x-1\right)=x^2\ge0\Rightarrow y^3\ge\left(x-1\right)^3\Rightarrow y\ge x-1\)(2)

Từ (1) và (2) suy ra \(x-1\le y< x+1\Rightarrow\orbr{\begin{cases}y=x-1\\y=x\end{cases}}\)(do x, y nguyên)

  • Trường hợp y = x - 1 thì phương trình trở thành \(x^3-2x^2+3x-1=x^3-3x^2+3x-1\Leftrightarrow x^2=0\Leftrightarrow x=0\Rightarrow y=-1\)
  • Trường hợp y = x thì phương trình trở thành \(2x^2-3x+1=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1=y\\x=\frac{1}{2}\left(L\right)\end{cases}}\)

Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x;y\right)\in\left\{\left(0;-1\right);\left(1;1\right)\right\}\)

2 tháng 9 2015

Đặng Đỗ Bá Minh lih tih