K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương

\(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)

=1/2-1/380

=190/380-1/380

=189/380

2 tháng 3 2023

Gọi biểu thức trên là S. Ta có :

\(S=\dfrac{1}{1\times2\times3}+\dfrac{1}{2\times3\times4}+\dfrac{1}{3\times4\times5}+...+\dfrac{1}{18\times19\times20}\)

\(=\dfrac{1}{2}\times\left(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+...+\dfrac{2}{18\times19\times20}\right)\)

Trước tiên, ta áp dụng : \(\dfrac{2}{a\left(a+1\right)\left(a+2\right)}=\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}\)

Ta sẽ có : 

\(S=\dfrac{1}{2}\times\left(\dfrac{1}{1\times2}-\dfrac{1}{2\times3}+\dfrac{1}{2\times3}-\dfrac{1}{3\times4}+\dfrac{1}{3\times4}-\dfrac{1}{4\times5}+...+\dfrac{1}{18\times19}-\dfrac{1}{19\times20}\right)\)

\(=\dfrac{1}{2}\times\left(\dfrac{1}{1\times2}-\dfrac{1}{19\times20}\right)\)

\(=\dfrac{1}{2}\times\dfrac{1}{1\times2}-\dfrac{1}{2}\times\dfrac{1}{19\times20}\)

\(=\dfrac{1}{4}-\dfrac{1}{760}=\dfrac{189}{760}\)

2 tháng 3 2023

`=1/2(1/1×2 - 1/2×3 + 1/2×3 - 1/3×4 + 1/3×4 - 1/4×5 + ... + 1/18×19 - 1/19×20)`
`=1/2(1/2 - 1/19×20)`
`=1/2×189/380 `
`=189/760`

17 tháng 6 2017

a)

\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)

\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)

\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(3A=(1.2.3-0.1.2)+\left(2.3.4-1.2.3\right)+\left(3.4.5-2.3.5\right)+...+\left[n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\right]\)\(3A=-0.1.2+n.\left(n+1\right).\left(n+2\right)\)

\(3A=n.\left(n+1\right).\left(n+2\right)\)

\(A=\dfrac{n.\left(n+1\right).\left(n+2\right)}{3}\)

17 tháng 6 2017

c)

\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

\(4B=1.2.3.4+2.3.4.4+3.4.5.4+...+\left(n-1\right).n.\left(n+2\right).4\)

\(4B=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+\left(n-1\right).n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)\(4B=1.2.3.4+\left(2.3.4.5-1.2.3.4\right)+\left(3.4.5.6-2.3.4.5\right)+...+\left[\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right).\left(n-2\right)\right]\)\(4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\\ B=\dfrac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

2 tháng 5 2017

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 +...+ (n - 1)n(n + 1)

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +...+ (n - 1)n(n + 1).4

4A = 1.2.3.(4 - 0) + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) +....+ (n - 1)n(n + 1).[(n + 2) - (n - 2)]

4A = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 +...+ (n - 1)n(n + 1)(n + 2) - (n - 2)(n - 1)n(n + 1)

4A = [1.2.3.4 + 2.3.4.5 + 3.4.5.6 +....+ (n - 1)n(n + 1)(n + 2)] - [0.1.2.3 + 1.2.3.4 + 2.3.4.5 + (n - 2)(n - 1)n(n + 1)]

4A = (n - 1)n(n + 1)(n + 2) - 0.1.2.3

4A = (n - 1)n(n + 1)(n + 2)

=> A = \(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)

\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)

hay \(A=\dfrac{-4949}{19800}\)

13 tháng 8 2016

\(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{36\times37\times38}+\frac{1}{37\times38\times39}\)

\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{36\times37\times38}+\frac{2}{37\times38\times39}\)

\(2A=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{37\times38}-\frac{1}{38\times39}\)

\(2A=\frac{1}{1\times2}-\frac{1}{38\times39}\)

\(2A=\frac{741}{1482}-\frac{1}{1482}\)

\(2A=\frac{370}{741}\)

\(A=\frac{370}{741}:2=\frac{185}{741}\)