Tính B= 1x2x3 + 2x3x4 + ... + (n-1)n(n+1)
Gấp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)
=1/2-1/380
=190/380-1/380
=189/380
Gọi biểu thức trên là S. Ta có :
\(S=\dfrac{1}{1\times2\times3}+\dfrac{1}{2\times3\times4}+\dfrac{1}{3\times4\times5}+...+\dfrac{1}{18\times19\times20}\)
\(=\dfrac{1}{2}\times\left(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+...+\dfrac{2}{18\times19\times20}\right)\)
Trước tiên, ta áp dụng : \(\dfrac{2}{a\left(a+1\right)\left(a+2\right)}=\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}\)
Ta sẽ có :
\(S=\dfrac{1}{2}\times\left(\dfrac{1}{1\times2}-\dfrac{1}{2\times3}+\dfrac{1}{2\times3}-\dfrac{1}{3\times4}+\dfrac{1}{3\times4}-\dfrac{1}{4\times5}+...+\dfrac{1}{18\times19}-\dfrac{1}{19\times20}\right)\)
\(=\dfrac{1}{2}\times\left(\dfrac{1}{1\times2}-\dfrac{1}{19\times20}\right)\)
\(=\dfrac{1}{2}\times\dfrac{1}{1\times2}-\dfrac{1}{2}\times\dfrac{1}{19\times20}\)
\(=\dfrac{1}{4}-\dfrac{1}{760}=\dfrac{189}{760}\)
a)
\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)
\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)
\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(3A=(1.2.3-0.1.2)+\left(2.3.4-1.2.3\right)+\left(3.4.5-2.3.5\right)+...+\left[n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\right]\)\(3A=-0.1.2+n.\left(n+1\right).\left(n+2\right)\)
\(3A=n.\left(n+1\right).\left(n+2\right)\)
\(A=\dfrac{n.\left(n+1\right).\left(n+2\right)}{3}\)
c)
\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.4+3.4.5.4+...+\left(n-1\right).n.\left(n+2\right).4\)
\(4B=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+\left(n-1\right).n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)\(4B=1.2.3.4+\left(2.3.4.5-1.2.3.4\right)+\left(3.4.5.6-2.3.4.5\right)+...+\left[\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right).\left(n-2\right)\right]\)\(4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\\ B=\dfrac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 +...+ (n - 1)n(n + 1)
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +...+ (n - 1)n(n + 1).4
4A = 1.2.3.(4 - 0) + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) +....+ (n - 1)n(n + 1).[(n + 2) - (n - 2)]
4A = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 +...+ (n - 1)n(n + 1)(n + 2) - (n - 2)(n - 1)n(n + 1)
4A = [1.2.3.4 + 2.3.4.5 + 3.4.5.6 +....+ (n - 1)n(n + 1)(n + 2)] - [0.1.2.3 + 1.2.3.4 + 2.3.4.5 + (n - 2)(n - 1)n(n + 1)]
4A = (n - 1)n(n + 1)(n + 2) - 0.1.2.3
4A = (n - 1)n(n + 1)(n + 2)
=> A = \(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)
\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)
hay \(A=\dfrac{-4949}{19800}\)
\(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{36\times37\times38}+\frac{1}{37\times38\times39}\)
\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{36\times37\times38}+\frac{2}{37\times38\times39}\)
\(2A=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{37\times38}-\frac{1}{38\times39}\)
\(2A=\frac{1}{1\times2}-\frac{1}{38\times39}\)
\(2A=\frac{741}{1482}-\frac{1}{1482}\)
\(2A=\frac{370}{741}\)
\(A=\frac{370}{741}:2=\frac{185}{741}\)
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương