-x2+y2+2x+4y+7=2\(\sqrt{\left(x^2+2x+1\right)\left(y^2+4y+6\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
\(ĐK:y\left(x-2y\right)\ge0;y\left(4y-x\right)\ge0\)
Ta thấy \(y=0\) ko phải nghiệm của HPT
Với \(y\ne0\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}1=2x^2-5xy-y^2\\1=y\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\end{matrix}\right.\\ \Leftrightarrow2x^2-5xy-y^2=y\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\\ \Leftrightarrow2\cdot\dfrac{x^2}{y^2}-5\cdot\dfrac{x}{y}-1=\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}\)
Đặt \(\dfrac{x}{y}=a\left(y\ne0\right)\)
\(PT\Leftrightarrow2a^2-5a-1=\sqrt{a-2}+\sqrt{4-a}\left(2\le a\le4\right)\\ \Leftrightarrow\left(2a^2-5a-3\right)+\left(1-\sqrt{a-2}\right)+\left(1-\sqrt{4-a}\right)=0\\ \Leftrightarrow\left(a-3\right)\left(2a+1\right)-\dfrac{a-3}{1+\sqrt{a-2}}+\dfrac{a-3}{1+\sqrt{4-a}}=0\\ \Leftrightarrow\left(a-3\right)\left(2a+1-\dfrac{1}{1+\sqrt{a-2}}+\dfrac{1}{1+\sqrt{4-a}}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=3\left(tm\right)\\2a+\dfrac{\sqrt{a-2}}{\sqrt{a-2}+1}+\dfrac{1}{\sqrt{4-a}+1}=0\left(\text{*}\right)\end{matrix}\right.\)
Với \(a\ge2\Leftrightarrow\left(\text{*}\right)\text{ vô nghiệm}\)
\(\Leftrightarrow a=3\Leftrightarrow x=3y\)
Thay vào \(PT\left(1\right)\Leftrightarrow18y^2=1+15y^2+y^2\)
\(\Leftrightarrow y^2=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{\sqrt{2}}\Rightarrow x=\dfrac{3}{\sqrt{2}}\\y=-\dfrac{1}{\sqrt{2}}\Rightarrow x=-\dfrac{3}{\sqrt{2}}\end{matrix}\right.\)
Vậy ...
ĐKXĐ:...
Từ pt đầu:
\(\Leftrightarrow y^2+y\sqrt{y^2+1}=x-2y+\dfrac{1}{2}\)
\(\Leftrightarrow y^2+1+2y\sqrt{y^2+1}+y^2=2x-4y+2\)
\(\Leftrightarrow\left(\sqrt{y^2+1}+y\right)^2=2x-4y+2\)
\(\Leftrightarrow\sqrt{y^2+1}+y=\sqrt{2x-4y+2}\)
Thế xuống pt dưới:
\(x+\sqrt{x^2-2x+5}=1+2\sqrt{y^2+1}+2y\)
\(\Leftrightarrow\left(x-1\right)+\sqrt{\left(x-1\right)^2+4}=2y+\sqrt{\left(2y\right)^2+4}\)
Do hàm \(t+\sqrt{t^2+4}\) đồng biến
\(\Leftrightarrow x-1=2y\Rightarrow x=2y+1\)
Thế vào pt đầu:
\(\left(y+1\right)^2+y\sqrt{y^2+1}=2y+\dfrac{5}{2}\)
\(\Leftrightarrow y^2+y\sqrt{y^2+1}=\dfrac{3}{2}\)
\(\Leftrightarrow\left(\sqrt{y^2+1}+y\right)^2=4\)
\(\Leftrightarrow\sqrt{y^2+1}+y=2\)
\(\Leftrightarrow\sqrt{y^2+1}=2-y\)
\(\Leftrightarrow...\)