phan tich da thuc sau thanh nhan tu
b2c + bc2 + ac2 - a2c - ab( a+b)
pq-p2-5(p-q)
y2 + 1 + 2y - 49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab(a-b)+bc(b-c)+ac(c-a)
=ab(a-b)-bc[(a-b)+(c-a)] +ac(c-a)
=ab(a-b) -bc(a-b) -bc(c-a) + ac(c-a)
=b(a-c)(a-b) -c(a-c)(a-b)
=(b-c)(a-c)(a-b)
\(49.\left(y-4\right)^2-9y^2-36y-36\)
\(=7^2\left(y-4\right)^2-\left(9y^2+36y+36\right)\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28+3y+6\right).\left(7y-28-3y-6\right)\)
\(=\left(10y-22\right).\left(4y-34\right)\)
\(=4.\left(5y-11\right).\left(2y-17\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=\) \(4\left(2y-17\right)\left(5y-11\right)\)
a/ \(4x^2-49=\left(2x\right)^2-7^2=\left(2x-7\right)\left(2x+7\right)\)
b/ \(a^2-2a-b^2-2b=\left(a^2-2a+1\right)-\left(b^2+2b+1\right)=\left(a-1\right)^2-\left(b+1\right)^2\)
\(=\left(a-1-b-1\right)\left(a-1+b+1\right)=\left(a-b-2\right)\left(a+b\right)\)
\(ab\left(x^2+y^2\right)-xy\left(a^2+b^2\right)\)
\(=abx^2+aby^2-a^2xy-b^2xy\)
\(=ax\left(bx-ay\right)+by\left(ay-bx\right)\)
\(=ax\left(bx-ay\right)-by\left(bx-ay\right)\)
\(\left(bx-ay\right)\left(ax-by\right)\)
hãy k nếu bạn thấy đây là câu tl đúng :)
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
a) \(-y^2+\dfrac{1}{9}\)
\(=-\left(y^2-\left(\dfrac{1}{3}\right)^2\right)\)
\(=-\left(y+\dfrac{1}{3}\right)\left(y-\dfrac{1}{3}\right)\)
b) \(4^4-256\)
\(=4^4-4^4\)
\(=0\)
\(b^2c+bc^2+ac^2-a^2c-ab\left(a+b\right)\)
= \(\left(-a^2c+b^2c\right)+\left(bc^2+ac^2\right)-ab\left(a+b\right)\)
= \(-c\left(a^2-b^2\right)+c^2\left(a+b\right)+ab\left(a+b\right)\)
= \(-c\left(a+b\right)\left(a-b\right)+c^2\left(a+b\right)+ab\left(a+b\right)\)
= \(\left(a+b\right)\left[-c\left(a-b\right)+c^2+ab\right]\) = \(\left(a+b\right)\left(c^2-ca+bc+ab\right)\)
câu đấu mik ko bít, mong bn thông cảm
\(pq-\left(p^2\right)-5\cdot\left(p-q\right)\)
\(-p^2+pq-5p+5q\)
Bước 1 : Nhân hệ số của kỳ đầu tiên theo hằng số \(1\cdot-48=-48\)
Bước 2 : Tìm 2 yếu tố - 48 có tổng bằng hệ số trung hạng là 2
\(-48+1=-47\)
\(-24+2=-22\)
\(-16+3=13\)
\(-12+4=-8\)
\(-8+6=-2\)
\(-6+8=2\)
Bước 3 : Viết lại đa thức tách cụm từ trng gian bằng cách sữ dụng 2 yếu tố được tìm thấy ở bước 2 ở trên -6 và -8
\(y^2-6x+8y-48\)
Bước 4 : Thêm 2 thuật ngữ đầu tiên, kéo ra như các yếu tố :
\(y\cdot\left(y-6\right)\)
Thêm 2 thuật ngữ cuối cùng, rút ra các yếu tố phổ biến :
\(8\cdot\left(y-6\right)\)
Bước 5 : Thêm 4 thuật ngữ của bước 4 :
\(\left(y+8\right)\cdot\left(y-6\right)\)