K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

ĐK : \(a\ne b\ne c\)

\(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca\right)-3ab\left(a+b+c\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)

\(=\dfrac{a+b+c}{2}\)

2 tháng 8 2016

hàiiii chán quá

12 tháng 11 2017

rút gọn phân thức:

\(\dfrac{\left(-x\right)^5.a^2}{x^2.\left(-a\right)^3}=\dfrac{x^2.\left(-x\right)^3.a^2}{x^2.\left(-a\right).a^2}=\dfrac{-x^3}{-a}=\dfrac{x^3}{a}\)

12 tháng 11 2017

\(\dfrac{\left(-x\right)^5.a^2}{x^2.\left(-a\right)^3}\\ =\dfrac{\left(-x\right)^3x^2.a^2}{x^2.\left(-a\right).a^2}\\ =\dfrac{\left(-x\right)^3}{a}\)

21 tháng 3 2017

a) \(2x^2y^3.\dfrac{1}{4}xy^3\left(-3\right)xy\)

\(=\left(-3.2.\dfrac{1}{4}\right)x^4y^7\)

\(=\dfrac{-3}{2}x^4y^7\)

\(\Rightarrow Hệ\) số: \(\dfrac{-3}{2}\)

Phần biến: \(x^4y^7\)

b) \(\left(-2x^3y\right)^2.xy^2.\dfrac{1}{5}y^5\)

\(=\dfrac{4}{5}x^7y^9\)

\(\Rightarrow Phần\) biến: \(x^7y^9\)

Hệ số: \(\dfrac{4}{5}.\)

21 tháng 3 2017

a/ \(2x^2y^3\cdot\dfrac{1}{4}xy^3\left(-3xy\right)\)

\(=\left[2\cdot\dfrac{1}{4}\cdot\left(-3\right)\right]\left(x^2.x.x\right)\left(y^3.y^3.y\right)\)

\(=-\dfrac{3}{2}x^4y^7\)

Phần biến: \(x^4y^7\)

Hệ số: \(-\dfrac{3}{2}\)

b/ \(\left(-2x^3y\right)^2\cdot xy^2\cdot\dfrac{1}{5}y^5=4x^6y^2\cdot xy^2\cdot\dfrac{1}{5}y^5\) \(=4\cdot\dfrac{1}{5}\left(x^6\cdot x\right)\left(y^2\cdot y^2\cdot y^5\right)=\dfrac{4}{5}x^7y^9\)

Phần biến: \(\dfrac{4}{5}\)

Hệ số: \(x^7y^9\)

17 tháng 11 2021

\(A=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left(a^2+b^2+c^2-ab-bc-ca\right)}=\dfrac{a+b+c}{2}=2\)

6 tháng 8 2017

a) \(\left(a+b\right)^3-\left(a-b\right)^3-6a^2b\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)-6a^2b\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-6a^2b\)

\(\Leftrightarrow2b^3\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3-6ab^2\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)-6ab^2\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-6ab^2\)

\(\Leftrightarrow2b^3+6a^2b-6ab^2\)

NV
8 tháng 1 2021

\(B=\dfrac{a^3+c^3+3ac\left(a+c\right)-b^3-3ac\left(a+c\right)+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2\right]-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{-2\left(2a^2+2b^2+2c^2+2ab+2bc-2ca\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{-2\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2\right]}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}=-2\)