cho các số thực a,b,c thoả mãn \(a^2+b^2+c^2+abc=4\)
CMR \(ab+bc+ca-abc\le2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)
Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)
\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)
b.
\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)
\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)
\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)
- TH1: nếu \(a+b+c\ge4\)
Ta có: \(ab+bc+ca=4-abc\le4\)
\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)
(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)
- TH2: nếu \(3\le a+b+c< 4\)
Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)
\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)
Áp dụng BĐT Schur:
\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)
\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)
(Dấu "=" xảy ra khi \(a=b=c=1\))
\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)
\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)
\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ
Lời giải:
Đặt \(\left(\frac{1}{ab},\frac{1}{bc},\frac{1}{ac}\right)\mapsto (x,y,z)\). ĐK chuyển thành \(x^2+y^2+z^2+2xyz=1\)
Ta cần CM \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\Leftrightarrow x+y+z\geq 2(xy+yz+xz)\) $(1)$
Vì \(x^2+y^2+z^2+2xyz=1\) nên tồn tại $m,n,p>0$ sao cho \(x=\frac{m}{\sqrt{(m+n)(m+p)}};y=\frac{n}{\sqrt{(n+p)(n+m)}};z=\frac{p}{\sqrt{(m+p)(n+p)}}\)
Khi đó \((1)\Leftrightarrow m\sqrt{n+p}+n\sqrt{m+p}+p\sqrt{m+n}\geq \frac{2mn}{\sqrt{m+n}}+\frac{2np}{\sqrt{n+p}}+\frac{2mp}{\sqrt{m+p}}\)
\(\Leftrightarrow \frac{m(p-n)}{\sqrt{m+n}}+\frac{n(p-m)}{\sqrt{m+n}}+\frac{n(m-p)}{\sqrt{n+p}}+\frac{p(m-n)}{\sqrt{n+p}}+\frac{m(n-p)}{\sqrt{m+p}}+\frac{p(n-m)}{\sqrt{m+p}}\geq 0\)
\(\Leftrightarrow \sum \frac{m(p-n)^2}{\sqrt{(m+n)(m+p)}(\sqrt{m+n})+\sqrt{m+p})}\geq 0\) (luôn đúng)
Do đó $(1)$ đúng, suy ra ta có đpcm
Dấu $=$ xảy ra khi $m=n=p$ hay $x=y=z=\frac{1}{2}$ hay $a=b=c=\sqrt{2}$
Theo bđt Cauchy - Schwart ta có:
\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)
\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)
Đặt \(ab+bc+ca=x;abc=y\).
Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)
\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )
Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1
Dựa vào điều kiện xuy ra được trong 3 xô: \(\left(1-a\right);\left(1-b\right);\left(1-c\right)\)co 2 xô cùng dâu. Giả xư đo là \(\left(1-a\right);\left(1-b\right)\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\)
Ta lại co:
\(4=a^2+b^2+c^2+abc\ge c^2+2ab+abc\)
\(\Leftrightarrow ab\left(2+c\right)\le4-c^2\)
\(\Leftrightarrow ab\le2-c\)
Quay lại bài toan ta co:
\(ab+bc+ca-abc\le2+\text{}\left(bc+ca-abc-c\right)=2-c\left(1-a\right)\left(1-b\right)\le2\)