Phân tích thành nhân tử:
a) x6 + 1
b) x6 - y6
c) x9 + 1
Ai làm đúng + có lời giải + nhanh nhất mk tk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
\(a,=\left(3x+1\right)^2-y^2=\left(3x-y+1\right)\left(3x+y+1\right)\\ b,=x\left(x^2-5x+6\right)=x\left(x^2-2x-3x+6\right)=x\left(x-2\right)\left(x-3\right)\)
x 6 - y 6 = x 3 2 - y 3 2 = x 3 + y 3 x 3 - y 3 = x + y x 2 - x y + y x - y x 2 + x y + y 2
\(a,=\sqrt{xy}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{xy}+1\right)\left(\sqrt{x}-1\right)\\ b,=\sqrt{xy}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{xy}+1\right)\)
a) \(x^6+1=x^6-\left(-1\right)=\left(x^3\right)^2-\left(-1^3\right)^2=\left(x^3\right)^2-\left(-1\right)\)
\(=\left(x^3-\left(-1\right)\right)\left(x^3+\left(-1\right)\right)=\left(x^3+1\right)\left(x^3-1\right)\)
b) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
c) \(x^9+1=\left(x^3\right)^3+\left(-1\right)^3\)
\(=\left(x^3+1\right)\left(\left(x^3\right)^2-x^3.1+1^2\right)=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
a) \(x^6+1=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
b) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
c) \(x^9+1=\left(x^9-x^6+x^3\right)+\left(x^6-x^3+1\right)\)
\(=x^3\left(x^6-x^3+1\right)+\left(x^6-x^3+1\right)\)
\(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)