Giúp mình với:
a, 3^1.3^2.3^3.3^4......3^100
b, 1^1.2^2.3^3.....100^100
[ ^là dấu mũ .là dấu nhân]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2003}\)= \(\frac{1}{2013}\)
c. \(5.\left(\frac{1}{14}+\frac{1}{84}+\frac{1}{204}+\frac{1}{374}\right)\)= 5. \(\frac{1}{11}\)= \(\frac{5}{11}\)
Mình biết 2 câu này thôi, thông cảm nhá...!!!
d) Ta có: 100-(1+1/2+1/3+1/4+...+1/100)
=1x100-(1+1/2+1/3+1/4+...+1/100)
=(1-1)+(1-1/2)+(1-1/3)+(1-1/4)+....+(1-1/100)
=1/2+2/3+3/4+...+99/100
\(a)\)\(\left(50-6.x\right).18=2^3.3^2.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=8.9.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=360\)
\(\Leftrightarrow\)\(\left(50-6.x\right)=360\div18\)
\(\Leftrightarrow\)\(50-6.x=20\)
\(\Leftrightarrow\)\(6.x=50-20\)
\(\Leftrightarrow\)\(6.x=30\)
\(\Leftrightarrow\)\(x=5\)
\(b)\)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=7450\)
\(\Leftrightarrow\)\(100x+\left(1+2+3+...+100\right)=7450\)
\(\Leftrightarrow\)\(100x+5050=7450\)
\(\Leftrightarrow\)\(100x=7450-5050\)
\(\Leftrightarrow\)\(100x=2400\)
\(\Leftrightarrow\)\(x=24\)
b.
(x+1)+(x+2)+...+(x+100)=7450
=> 100x + (1+2+3+...+100)=7450
=>100x + (100+1).50=7450
=>100x=2400
=>x=24
E = 1.2+2.3+3.4+......+99.100
Gấp E lên 3 lần ta có:
E . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
E . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
E . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 E . 3 = 99.100.101
E = 99.100.101 : 3
E = 33.100.101
E = 333 300
k mik nha
E = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3E = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 99.100.(101-98)
=> 3E = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3E = 99.100.101
=> E = 333300
Ta có : A = 1/1.2 + 1/2.3 + .... + 1/98.99 + 1/99.100 .
=> A = 1 - 1/2 + 1/2 - 1/3 + .... + 1/98 - 1/99 + 1/99 - 1/100 .
=> A = 1 - 1/100 .
=> A = 99/100 .
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}\)
\(\Rightarrow A=\frac{99}{100}\)
a)đặt là A
r xét 3A=32.33....3100
- A=31.32.33.....399
2A=3100-3
A=(3100-3)/2