chứng minh rằng :
2011 ^ 2019 - 1911 ^ 2019 chia hết cho 10
ai nhanh mk tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x+2y/x+y=2
=> 2(x+y)/x+y=2
=>2/1=2
=> đpcm
Câu b thì mình nghĩ nó không thể bằng được đâu bạn
Vì p là số nguyên tố lớn hơn 3 \(\Rightarrow\)p là số lẻ
Đặt \(p=2k+1\left(k\inℕ,k>1\right)\)
\(\Rightarrow\left(p+2019\right)\left(p+2011\right)=\left(2k+1+2019\right)\left(2k+1+2011\right)\)
\(=\left(2k+2020\right)\left(2k+2012\right)=4\left(k+1010\right)\left(k+1006\right)⋮4\)
Câu hỏi của Đoàn Minh Vũ - Toán lớp 6 - Học toán với OnlineMath
D = 1 + 2 + 2^2 + ...+ 2^2019 ( có 2020 số hạng) ( đề như z phải ko bn)
D = (1+2+2^2+2^3) + ...+ (2^2016+2^2017 +2^2018+2^2019) ( có 505 nhóm)
D = 15 + ...+ 2^2016.(1+2+2^2+2^3)
D = 15.(1+...+2^2016) chia hết cho 15
Bạn chứng minh cái này : a2n+1 + b2n+1 \(⋮\)a + b ; an - bn \(⋮\)a - b
Ta có : 20182019 + 20202019 = ( 20182019 + 1 ) + ( 20202019 - 1 )
20182019 + 1 \(⋮\)( 2018 + 1 ) = 2019 ; 20202019 - 1 \(⋮\)( 2010 - 1 ) = 2019
\(\Rightarrow\) 20182019 + 20202019 \(⋮\) 2019
\(A=10^{2019}+2=\left(2.5\right)^{2019}+2=2\left(2^{2018}.5^{2019}+1\right)⋮2\)
Ta có: 10 chia 3 dư 1
=> \(10^{2019}:3\)dư 1
=> \(10^{2019}+2:3\)dư 3
mà 3 chia hết cho 3
=> \(10^{2019}+2⋮3\)
Ta có: \(2019^{2020}=\left(2019\right)^{2.1010}=4038^{1010}⋮4038\)
\(2019^{2019}⋮4038̸\)
=> \(2019^{2020}-2019^{2019}⋮4038̸\)( Áp dụng tính chất một hiệu chia hết cho 1 số ) ( Vô lí )
Vậy đề bài bị sai.
Cho mik hỏi, ^ là mũ hay nhân
^ là mũ !