K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2021

Công thức tính nhanh phương trình đường thẳng qua 2 cực trị của hàm bậc 3 dạng: \(y=ax^3+bx^2+cx+d\) là: \(y=\left(\dfrac{2c}{3}-\dfrac{2b^2}{9a}\right)x+\left(d-\dfrac{bc}{9a}\right)\)

Đường thẳng đi qua gốc tọa độ (2 cực trị thẳng hàng O) khi tung độ gốc bằng 0

\(\Rightarrow d-\dfrac{bc}{9a}=0\)

Áp dụng cho bài này: 

\(3-\dfrac{\left(-2\right).m}{9.\dfrac{1}{3}}=0\Rightarrow-2m=9\Rightarrow m=-\dfrac{9}{2}\in\left(-5;-3\right)\)

19 tháng 9 2021

C

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

3 tháng 6 2021

1D

2A

3 tháng 2 2022

Ta có : \(y'=3x^2+3m\)

Điều kiện để hàm số có 2 điểm cực trị là y'=0 có 2 nghiệm phân biệt

\(\Leftrightarrow 3x^2=-3m\) có 2 nghiệm phân biệt

\(\Leftrightarrow m<0\)

Đường thẳng đi qua 2 điểm cực trị là phần dư khi lấy y chia cho y':

\(x^3+3mx+1=\dfrac{x}{3}.(3x^2+3m)+2mx+1\)

\(=>\) đường thẳng đi qua 2 điểm cực trị có dạng: \(y=2mx+1\)

\(\Leftrightarrow 2mx-y+1=0\) \((\Delta)\)

\(d_{(M,\Delta)}=\dfrac{|0.2m+3.(-1)+1|}{\sqrt{4m^2+1}}=\dfrac{2}{\sqrt{5}}\)

\(\Leftrightarrow 4m^2+1=5 \Leftrightarrow m^2=1 \Leftrightarrow m=\pm1\)

Đối chiếu với điều kiện ta được \(m=1\)

 

15 tháng 9 2021

Theo đk thì m=–1 mới đúng

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 Với giá trị nào của m thì y là hàm số bậc nhấtVới giá trị nào của m thì hàm số đồng biến.Tìm m để đồ thị hàm số điqua điểm A(2; 3)Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.Tìm m để đồ thị đi qua điểm 10 trên trục hoành .Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1Chứng minh đồ thị hàm số luôn đi...
Đọc tiếp

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ 
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2 
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y 
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x 
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục

4
6 tháng 1 2019

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

6 tháng 1 2019

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

NV
13 tháng 12 2021

a. Hàm có 3 cực trị \(\Rightarrow m< 0\)

\(y'=8x^3+4mx=4x\left(2x^2+m\right)=0\Rightarrow\left[{}\begin{matrix}x=0;y=-\dfrac{3m}{2}\\x=-\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\\x=\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\end{matrix}\right.\)

Trong đó \(A\left(0;-\dfrac{3m}{2}\right)\) là cực đại và B, C là 2 cực tiêu

Do tam giác ABC luôn cân tại A \(\Rightarrow\) tâm I của đường tròn ngoại tiếp luôn nằm trên trung trực BC hay luôn nằm trên Oy

Mà tứ giác ABCO nội tiếp \(\Rightarrow OI=AI\Rightarrow I\)  là trung điểm OA (do I, O, A thẳng hàng, cùng nằm trên Oy)

\(\Rightarrow I\left(0;-\dfrac{3m}{4}\right)\)

Mặt khác trung điểm BC cũng thuộc Oy và IB=IC (do I là tâm đường tròn ngoại tiếp)

\(\Rightarrow\) I trùng trung điểm BC

\(\Rightarrow-\dfrac{3m}{4}=-\dfrac{m^2+3m}{2}\) \(\Rightarrow m\)

NV
13 tháng 12 2021

b.

Từ câu a ta thấy khoảng cách giữa 2 cực đại là:

\(\left|x_B-x_C\right|=2\sqrt{-\dfrac{m}{2}}=5\Rightarrow m=-\dfrac{25}{2}\)

6 tháng 1 2021

a) Để đồ thị 2 hàm số đã cho cắt nhau thì:

\(m-1\ne3-m\Leftrightarrow m\ne2\)

Vậy khi m\(\ne\)2 thì đồ thị của hai hàm số đã cho cắt nhau

b) Khi m=0 ta đc hàm số y = -x+2 và y=3x -2

* hàm số y=-x +2, cho x =0 thì y=2 => A(0;2)

, cho y=0 thì x=2 => B(2;0)

*Hàm số y =3x-2, cho x=0 thì y= -2 => C(0;-2)

cho y=0 thì x=2/3 => D(2/3; 0)

2 1 2 1 -2 y=3x-2 y=-x+2 O ^ > x y

 

AH
Akai Haruma
Giáo viên
20 tháng 7 2017

Bài 1:

ĐTHS \(y=x^3+3mx+1\) có hai điểm cực trị khi \(y'=3x^2+3m=0\Leftrightarrow x^2+m=0\) có hai nghiệm phân biệt \(\Leftrightarrow m<0\)

Hoành độ của hai điểm cực trị chính là hai nghiệm của PT \(x^2+m=0\)

Khi đó ta có \(y=x^3+3mx+1=x(x^2+m)+2mx+1=2mx+1\)

Do đó \(d: y=2xm+1\) là đường thẳng đi qua hai điểm cực trị

\(\Rightarrow d(M,d)=\frac{|1-3|}{\sqrt{(2m)^2+1}}=\frac{2}{\sqrt{5}}\Leftrightarrow m^2=1\rightarrow m=-1\) (do \(m<0\))

Vậy $m=-1$

Bài 2:

ĐTHS trên có hai điểm cực trị khi \(y'=6x^2+6(m-1)x+6(m-2)=0\)

\(\Leftrightarrow 6[x+(m-2)](x+1)=0\) có hai nghiệm phân biệt.

Khi đó, chỉ cần \(m\neq 3\)

Từ pt trên ta thu được hai nghiệm \(x=2-m;x=-1\)

Điểm CĐ và CT nằm trong khoảng \((-2,3)\) suy ra

\(\left\{\begin{matrix} -1\in (-2;3)\\ 2-m\in (-2;3)\end{matrix}\right.\Leftrightarrow 4>m>-1\)

Vậy \(4>m>-1\)\(m\neq 3\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2017

Bài 3:

Ta có \(y'=x^2-2(m+1)x+2m+1=0\)

\(\Leftrightarrow [x-(2m+1)](x-1)=0\)

ĐTHS có cực trị khi PT trên có hai nghiệm phân biệt, tức là \(m\neq 0\)

Khi đó, hai nghiệm thu được là \(1\)\(2m+1\) .

Hiển nhiên các điểm cực trị của ĐTHS là \((1;m-1);\left(2m+1,\frac{-4m^3}{3}+m-1\right)\)

Điểm cực trị của ĐTHS thuộc trục hoành thì tung độ bằng $0$

Nếu \((1;m-1)\) là điểm cực đại thì \(\left\{\begin{matrix} m-1=0\\ m-1>\frac{-4m^3}{3}+m-1\end{matrix}\right.\Rightarrow m=1\)

Nếu \(\left (2m+1,\frac{-4m^3}{3}+m-1\right)\) là điểm cực đại thì

\(\left\{\begin{matrix} \frac{-4}{3}m^3+m-1=0\\ m-1<\frac{-4m^3}{3}+m-1\end{matrix}\right.\Rightarrow m<0\) (không thỏa mãn)

Vậy $m=1$