1 chiéc thuyền máy đi từ bến sông A đến bến sông B rồi quay về A . Vận tốc khi xuôi dòng là 24km/h và khi ngược dòng là 20km/h
a) vận tốc của dòng nước , thời gian thuyền đi xuôi dòng và ngược dòng
b) Tính khoảng cách giữa 2 bến sông biết thời gian đi xuôi từ A đến B và ngược từ B đến A là 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian về bến A hết: 8h30' - 7h = 2 h18 ' =2,3 h, Đổi: 30'=0,5h
Thời gian Thuyền máy đi từ A đến B rồi về lại A là:
t =2,3h - 0,5h=1,8h.
Thời gian thuyền máy đi từ A đến B là:
\(t_1=\dfrac{AB}{v_1}\) (1)
Thời gian thuyền máy đi từ A đến B là :
\(t_2=\dfrac{AB}{v_2}\) (2)
mà t = t1 + t2 = 1,8h
=>
b. Từ (1)(2) ta có:
c. Gọi: vận tốc của thuyền máy so với dòng nước là x
vận tốc của dòng nước so với bờ sông là y
Ta có :
x + y = 25 km/h (3)
x - y = 20 km/h (4)
Từ (3) và (4) ta được:
2x=45 => x=22,5, y=2,5
Nên :
vận tốc của thuyền máy so với dòng nước là 22,5 km/h
vận tốc của dòng nước so với bờ sông là 2,5 km/h
Gọi x(km/h) là vận tốc thực của thuyền máy
ĐK:x\(\ge\)2
Vận tốc lúc xuôi dòng: x+2 km/h
Vận tốc lúc ngược dòng: x-2 km/h
Thời gian lúc xuôi dòng từ A đến B: \(\frac{42}{x+2}\) h
Thời gian lúc ngược dòng từ B về A: \(\frac{42}{x-2}\) h
Vì thời gian lúc ngược dòng nhiều hơn thời gian xuôi dòng là 1 h 12' =\(\frac{6}{5}\)h nên ta có phương trình:
\(\frac{42}{x-2}-\frac{42}{x+2}=\frac{6}{5}\)
=>6x2-864=0
Giải phương trình ta được: x1=12(nhận) ; x2=-12(loại)
Vậy vận tốc xuôi dòng là 14 km/h vận tốc ngược dòng là 10 km/h
Đổi 2h18' = \(\dfrac{23}{10}h\)
Thời gian đi của thuyền là \(\dfrac{23}{10}-\dfrac{1}{2}=\dfrac{9}{5}\left(h\right)\)
Gọi thời gian xuôi dòng là x (h) (x < \(\dfrac{9}{5}\))
=> thời gian ngược dòng : \(\dfrac{9}{5}-x\) (h)
Theo bài ta có :
\(25.x=20.\left(\dfrac{9}{5}-x\right)\)
=> \(25x=36-20x\)
=> 45x = 36
=> x = \(\dfrac{4}{5}\left(h\right)\) (tm)
Khoảng cách từ A đến B là s = \(25.\dfrac{4}{5}=20\left(km\right)\)